Department of Mathematics, Trinity University, San Antonio, TX, USA.
J Biol Dyn. 2008 Oct;2(4):386-91. doi: 10.1080/17513750801956305.
A cell population in which cells are allowed to enter a quiescent (nonproliferating) phase is analyzed using a stochastic approach. A general branching process is used to model the population which, under very mild conditions, exhibits balanced exponential growth. A formula is given for the asymptotic fraction of quiescent cells, and a numerical example illustrates how convergence toward the asymptotic fraction exhibits a typical oscillatory pattern. The model is compared with deterministic models based on semigroup analysis of systems of differential equations.
使用随机方法分析允许细胞进入静止(非增殖)期的细胞群体。使用一般分支过程来对群体进行建模,在非常温和的条件下,群体表现出平衡的指数增长。给出了静止细胞的渐近分数的公式,数值示例说明了向渐近分数的收敛如何呈现典型的振荡模式。该模型与基于微分方程系统的半群分析的确定性模型进行了比较。