Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
J Am Chem Soc. 2012 Sep 5;134(35):14298-301. doi: 10.1021/ja305579h. Epub 2012 Aug 22.
Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure.
钒酸盐是许多生物过程的有效调节剂,晶体结构和 NMR 光谱研究表明它与许多酶相互作用。尽管这些效应通常发生在多聚体形式占主导地位的条件下,但晶体结构和 NMR 数据表明,抑制形式通常是单体正钒酸盐,由于其能够形成稳定的三角双锥配合物,因此是一种特别好的磷酸酶抑制剂。我们对磷酸酶 VHZ 与一种不寻常的偏钒酸盐物种形成的复合物进行了 1.14Å 结构的计算分析,并将其与两个经典的三角双锥钒酸盐-磷酸酶复合物进行了比较。结果支持在经典结构中对顶角配体的广泛离域键合。相比之下,在 VHZ 偏钒酸盐复合物中,中央平面 VO(3)(-) 部分只有一个顶角配体,亲核 Cys95,以及 V 和 S 之间的电子密度间隙。计算分析表明,V-S 相互作用主要是离子的。提出了一种机制来解释活性位点中偏钒酸盐的形成,这是从先前的晶体学证据表明能够与 VHZ 相关的磷酸酶的活性位点结合的二聚钒酸盐物种形成的。总之,结果表明,钒酸盐与生物系统的相互作用不仅仅依赖于溶液中特定抑制形式的预先形成。酶的催化性质可能主要作用于溶液中主要存在的多聚体形式,以生成在 VHZ 结构中观察到的偏钒酸盐离子等物种。