Cardiovascular Research Centre, Department of Pharmacology, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.
J Pharmacol Exp Ther. 2012 Nov;343(2):325-32. doi: 10.1124/jpet.112.196949. Epub 2012 Aug 9.
Excessive reverse-mode (RM) sodium/calcium exchanger 1.1 (NCX1.1) activity, resulting from intracellular sodium accumulation caused by reduced Na+/K+-ATPase activity, increased Na-H exchanger 1 activity. The induction of the voltage-gated sodium channel late current component (late INa), is a major pathway for intracellular calcium (Ca2+i) loading in cardiac ischemia-reperfusion (IR) injury and cardiac glycoside toxicity. Inhibition of late INa with the antianginal agent ranolazine is protective in models of IR injury and cardiac glycoside toxicity. However, whether inhibition of late INa alone is sufficient to provide maximal protection or additional inhibition of RM NCX1.1 provides further benefit remains to be determined conclusively. Therefore, the effects of ranolazine were compared with the INa inhibitor lidocaine in models of IR injury and ouabain toxicity, RM NCX1.1-mediated Ca2+ overload, and patch-clamp assays of RM NCX1.1 currents. Ranolazine and lidocaine (10 μM) similarly reduced Ca2+i overload and improved left ventricle work recovery in whole-heart models of IR injury or exposure to ouabain (80 μM). Ranolazine (10 μM), but not lidocaine (10 μM), reduced RM NCX1.1-mediated Ca2+i overload in ventricular myocytes. Furthermore, ranolazine inhibited RM NCX1.1 currents (IC50 1.7 μM), without affecting forward mode currents, revealing that ranolazine has novel RM NCX1.1 inhibitory actions. However, because lidocaine provides similar protection to ranolazine in whole-heart models but does not inhibit RM NCX1.1, we conclude that induction of late INa is upstream of RM NCX1.1 activity and selective inhibition of late INa alone is sufficient to reduce Ca2+i overload and contractile dysfunction in IR injury and cardiac glycoside toxicity.
过度的反向模式(RM)钠/钙交换器 1.1(NCX1.1)活性,由于 Na+/K+-ATP 酶活性降低导致细胞内钠积累而增加 Na-H 交换器 1 的活性。电压门控钠通道晚期电流成分(晚期 INa)的诱导,是心肌缺血再灌注(IR)损伤和强心苷毒性中心肌细胞内钙(Ca2+i)负荷的主要途径。抗心绞痛药物雷诺嗪抑制晚期 INa 在 IR 损伤和强心苷毒性模型中具有保护作用。然而,单独抑制晚期 INa 是否足以提供最大保护,或者抑制 RM NCX1.1 是否有进一步的益处,仍有待最终确定。因此,比较了雷诺嗪和 INa 抑制剂利多卡因在 IR 损伤和哇巴因毒性、RM NCX1.1 介导的 Ca2+过载以及 RM NCX1.1 电流的膜片钳检测模型中的作用。雷诺嗪和利多卡因(10 μM)同样减少了 Ca2+i 过载并改善了整体心脏模型中 IR 损伤或暴露于哇巴因(80 μM)时的左心室工作恢复。雷诺嗪(10 μM),而不是利多卡因(10 μM),降低了心室肌细胞中 RM NCX1.1 介导的 Ca2+i 过载。此外,雷诺嗪抑制 RM NCX1.1 电流(IC50 为 1.7 μM),而不影响正向模式电流,表明雷诺嗪具有新颖的 RM NCX1.1 抑制作用。然而,由于利多卡因在整体心脏模型中提供与雷诺嗪相似的保护作用,但不抑制 RM NCX1.1,我们得出结论,晚期 INa 的诱导是 RM NCX1.1 活性的上游,单独选择性抑制晚期 INa 足以减少 IR 损伤和强心苷毒性中的 Ca2+i 过载和收缩功能障碍。