Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
FEBS J. 2012 Oct;279(20):3828-43. doi: 10.1111/j.1742-4658.2012.08743.x. Epub 2012 Sep 7.
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution.
速生型枝枯病菌是一种革兰氏阴性细菌,它在易感植物的木质部导管内形成生物膜,并引起几种具有经济意义的作物病害。在本研究中,我们报告了速生型枝枯病菌二硫键异构酶 DsbC(XfDsbC)的功能和低分辨率结构特征。DsbC 是细菌周质中二硫键还原/异构化途径的一部分,在氧化蛋白折叠中发挥重要作用。在本研究中,我们在速生型枝枯病菌生物膜形成的不同阶段都检测到了 XfDsbC 的存在。在速生型枝枯病菌浮游生长过程中没有检测到 XfDsbC;然而,在给予亚致死铜冲击后,我们观察到 XfDsbC 的过度表达,这种过度表达也发生在浮游生长过程中。这些结果表明,在类似于铜诱导的氧化应激条件下,速生型枝枯病菌可以在体内利用 XfDsbC。此外,通过动态光散射和小角 X 射线散射,我们观察到 XfDsbC 的体外寡聚状态可能依赖于氧化还原环境。在还原条件下,XfDsbC 以二聚体形式存在,而在非还原条件下观察到假定的四聚体形式。综上所述,我们的研究结果表明,XfDsbC 在生物膜形成过程中的过度表达,并提供了在溶液中细菌二硫键异构酶的第一个结构模型。