Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States.
J Phys Chem A. 2012 Sep 13;116(36):8925-33. doi: 10.1021/jp306046w. Epub 2012 Aug 28.
In this paper, we report a study on the reactivity of the phenylium ion with acetylene, by measuring product yield as a function of pressure and temperature using mass-selected ion mobility mass spectrometry. The reactivity is dominated by a rapid sequential addition of acetylene to form covalently bonded C8H7(+) and C10H9(+) ions with an overall rate coefficient of 7-5 × 10(-10) cm(3) s(-1), indicating a reaction efficiency of nearly 50% at room temperature. The covalent bonding nature of the product ions is confirmed by high temperature studies where enhanced production of these ions is observed at temperatures as high as 660 K. DFT calculations at the UPBEPBE/6-31++G** level identify the C8H7(+) adduct as 2-phenyl-ethenylium ion, the most stable C8H7(+) isomer that maintains the phenylium ion structure. A small barrier of 1.6 kcal/mol is measured and attributed to the formation of the second adduct C10H9(+) containing a four-membered ring connected to the phenylium ion. Evidence for rearrangement of the C10H9(+) adduct to the protonated naphthalene structure at temperatures higher than 600 K is provided and suggests further reactions with acetylene with the elimination of an H atom and an H2 molecule to generate 1-naphthylacetylene or acenaphthylene cations. The high reactivity of the phenylium ion toward acetylene is in sharp contrast to the low reactivity of the benzene radical cation with a reaction efficiency of 10(-4)-10(-5), confirming that the first step in the cation ring growth mechanism is the loss of an aromatic H atom. The observed reactions can explain the formation of complex organics by gas phase ion-molecule reactions involving the phenylium ion and acetylene under a wide range of temperatures and pressures in astrochemical environments.
在本文中,我们通过使用质量选择离子迁移质谱法测量产物产率作为压力和温度的函数,报告了苯鎓离子与乙炔反应性的研究。反应性主要由乙炔的快速顺序加成主导,形成共价键合的 C8H7(+)和 C10H9(+)离子,总速率系数为 7-5×10(-10)cm(3)s(-1),表明在室温下反应效率接近 50%。通过高温研究证实了产物离子的共价键合性质,在高达 660 K 的温度下观察到这些离子的生成增强。在 UPBEPBE/6-31++G**水平下的 DFT 计算确定 C8H7(+)加合物为 2-苯基-乙烯基鎓离子,这是保持苯鎓离子结构的最稳定 C8H7(+)异构体。测量到 1.6 kcal/mol 的小势垒,并归因于形成第二个加合物 C10H9(+),其中包含连接到苯鎓离子的四元环。在高于 600 K 的温度下,提供了 C10H9(+)加合物重排为质子化萘结构的证据,并表明与乙炔进一步反应,消除一个 H 原子和一个 H2 分子,生成 1-萘基乙炔或苊烯阳离子。苯鎓离子对乙炔的高反应性与苯自由基阳离子的低反应性形成鲜明对比,苯自由基阳离子的反应效率为 10(-4)-10(-5),这证实了阳离子环增长机制的第一步是失去一个芳香 H 原子。在天体化学环境中,温度和压力范围广泛的情况下,观察到的反应可以解释涉及苯鎓离子和乙炔的气相离子-分子反应中复杂有机物的形成。