Suppr超能文献

肌强直性营养不良症:一叶障目,还是管中窥豹?

Myotonic dystrophy: is a narrow focus obscuring the rest of the field?

机构信息

Department of Pathology, University of Virginia, Charlottesville, Virginia, USA.

出版信息

Curr Opin Neurol. 2012 Oct;25(5):609-13. doi: 10.1097/WCO.0b013e328357b0d9.

Abstract

PURPOSE OF REVIEW

The myotonic dystrophies (DM1 and DM2) are the paradigm for RNA toxicity in disease pathogenesis. The emphasis of this review will be on recent developments and issues in understanding the pathogenesis of DM1 and how this is driving the accelerated pace of translational and therapeutic developments.

RECENT FINDINGS

RNA toxicity in myotonic dystrophy is now associated with bi-directional antisense transcription, dysregulation of microRNAs and potentially non-ATG-mediated translation of homopolymeric toxic proteins. The role of other RNA-binding proteins beyond MBNL1 and CUGBP1, such as Staufen 1 and DDX5, are being identified and studied with respect to their role in myotonic dystrophy. New functions for MBNL1 in miR-1 biogenesis might have a clinically relevant role in myotonic dystrophy cardiac conduction defects and pathology. Advances are being made in identifying and characterizing small molecules with the potential to disrupt CUG-MBNL1 interactions.

SUMMARY

Mechanisms of RNA toxicity are moving beyond a simplistic 'foci-centric' view of DM1 pathogenesis as a spliceopathy due to MBNL1 sequestration. Therapeutic development for myotonic dystrophy is moving rapidly with the development of antisense and small molecule therapies. Clinically, significant emphasis is being placed on biomarker discovery and outcome measures as an essential prelude to clinical trials.

摘要

目的综述

肌强直性营养不良症(DM1 和 DM2)是 RNA 毒性导致疾病发病机制的范例。本文重点将放在理解 DM1 发病机制方面的最新进展和问题上,以及这些进展如何推动转化和治疗发展的步伐加快。

最近的发现

肌强直性营养不良症中的 RNA 毒性现在与双向反义转录、miRNA 失调以及潜在的非 ATG 介导的同源毒性蛋白翻译有关。除了 MBNL1 和 CUGBP1 之外,其他 RNA 结合蛋白(如 Staufen 1 和 DDX5)的作用及其在肌强直性营养不良症中的作用也正在被确定和研究。MBNL1 在 miR-1 生物发生中的新功能可能在肌强直性营养不良症心脏传导缺陷和病理学中具有临床相关作用。人们正在努力识别和表征具有潜在能力破坏 CUG-MBNL1 相互作用的小分子。

总结

RNA 毒性的机制正在超越由于 MBNL1 隔离导致 DM1 发病机制的简单“焦点中心”观点的肌强直性营养不良症发病机制。肌强直性营养不良症的治疗开发正在迅速发展,反义治疗和小分子治疗正在取得进展。临床上,人们非常重视生物标志物的发现和结果衡量标准,因为这是临床试验的重要前提。

相似文献

1
Myotonic dystrophy: is a narrow focus obscuring the rest of the field?
Curr Opin Neurol. 2012 Oct;25(5):609-13. doi: 10.1097/WCO.0b013e328357b0d9.
3
MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1.
Hum Mol Genet. 2006 Jul 1;15(13):2138-45. doi: 10.1093/hmg/ddl137. Epub 2006 May 24.
4
Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms.
Biochim Biophys Acta. 2015 Apr;1852(4):594-606. doi: 10.1016/j.bbadis.2014.05.019. Epub 2014 May 29.
5
Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice.
J Physiol. 2019 Mar;597(5):1361-1381. doi: 10.1113/JP277123. Epub 2019 Jan 30.
6
Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats.
Nat Biomed Eng. 2022 Feb;6(2):207-220. doi: 10.1038/s41551-021-00838-2. Epub 2022 Feb 10.
8
MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1.
J Biol Chem. 2005 Feb 18;280(7):5773-80. doi: 10.1074/jbc.M410781200. Epub 2004 Nov 16.
10
Systemic Evaluation of Chimeric LNA/2'-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy.
Nucleic Acid Ther. 2020 Apr;30(2):80-93. doi: 10.1089/nat.2019.0811. Epub 2019 Dec 23.

引用本文的文献

1
Navigating gastrointestinal challenges in genetic myopathies: Diagnostic insights and future directions.
World J Methodol. 2025 Dec 20;15(4):102408. doi: 10.5662/wjm.v15.i4.102408.
2
hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies.
Muscle Nerve. 2021 Jun;63(6):928-940. doi: 10.1002/mus.27216. Epub 2021 Mar 22.
3
The Biomarker Potential of miRNAs in Myotonic Dystrophy Type I.
J Clin Med. 2020 Dec 4;9(12):3939. doi: 10.3390/jcm9123939.
4
Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy.
Front Neurol. 2018 Jul 10;9:519. doi: 10.3389/fneur.2018.00519. eCollection 2018.
5
Pharmacological and physiological activation of AMPK improves the spliceopathy in DM1 mouse muscles.
Hum Mol Genet. 2018 Oct 1;27(19):3361-3376. doi: 10.1093/hmg/ddy245.
6
Fragile X-associated tremor/ataxia syndrome - features, mechanisms and management.
Nat Rev Neurol. 2016 Jul;12(7):403-12. doi: 10.1038/nrneurol.2016.82. Epub 2016 Jun 24.
7
Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients.
Mol Biol Cell. 2016 Jun 1;27(11):1728-39. doi: 10.1091/mbc.E15-06-0356. Epub 2016 Mar 30.
8
Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier.
PLoS Genet. 2016 Jan 29;12(1):e1005827. doi: 10.1371/journal.pgen.1005827. eCollection 2016 Jan.
9
Fragile X-associated tremor/ataxia syndrome.
Ann N Y Acad Sci. 2015 Mar;1338(1):58-70. doi: 10.1111/nyas.12693. Epub 2015 Jan 26.
10
TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy.
Hum Mol Genet. 2015 Apr 1;24(7):2035-48. doi: 10.1093/hmg/ddu617. Epub 2014 Dec 11.

本文引用的文献

2
RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4221-6. doi: 10.1073/pnas.1117019109. Epub 2012 Feb 27.
3
Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.
ACS Chem Biol. 2012 May 18;7(5):856-62. doi: 10.1021/cb200408a. Epub 2012 Mar 5.
5
New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats.
Nucleic Acids Res. 2012 Apr;40(7):3159-71. doi: 10.1093/nar/gkr1228. Epub 2011 Dec 9.
6
Quantitative assessment of skeletal muscle degeneration in patients with myotonic dystrophy type 1 using MRI.
J Magn Reson Imaging. 2012 Mar;35(3):678-85. doi: 10.1002/jmri.22849. Epub 2011 Nov 8.
7
Pacemaker and implantable cardioverter-defibrillator use in a US myotonic dystrophy type 1 population.
J Cardiovasc Electrophysiol. 2011 Dec;22(12):1369-75. doi: 10.1111/j.1540-8167.2011.02200.x. Epub 2011 Oct 28.
8
Expanded CUG repeats Dysregulate RNA splicing by altering the stoichiometry of the muscleblind 1 complex.
J Biol Chem. 2011 Nov 4;286(44):38427-38438. doi: 10.1074/jbc.M111.255224. Epub 2011 Sep 7.
10
In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models.
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11866-71. doi: 10.1073/pnas.1018213108. Epub 2011 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验