Suppr超能文献

促性腺激素细胞在细胞和群体水平上的可塑性。

Gonadotrope plasticity at cellular and population levels.

机构信息

Institute for Neural Signal Transduction, Center for Molecular Neurobiology, 20251 Hamburg, Germany.

出版信息

Endocrinology. 2012 Oct;153(10):4729-39. doi: 10.1210/en.2012-1360. Epub 2012 Aug 14.

Abstract

Hormone-secreting cells within the anterior pituitary gland may form organized and interdigitated networks that adapt to changing endocrine conditions in different physiological contexts. For gonadotropes, this might reflect a strategy to cope with acute changes throughout different female reproductive stages. The current study examined gonadotropes in female mice at characteristically different hormonal stages: prepubertal, postpubertal, and lactating. Gonadotrope plasticity was examined at the level of the whole population and single cells at different stages by imaging both fixed and live pituitary slices. The use of a model animal providing for the identification of selectively fluorescent gonadotropes allowed the particular advantage of defining cellular plasticity specifically for gonadotropes. In vivo analyses of gonadotropes relative to vasculature showed significantly different gonadotrope distributions across physiological states. Video microscopy studies using live slices ex vivo demonstrated pituitary cell plasticity in the form of movements and protrusions in response to GnRH. As positive feedback from rising estradiol levels is important for priming the anterior pituitary gland for the LH surge, experiments provide evidence of estradiol effects on GnRH signaling in gonadotropes. The experiments presented herein provide new insight into potential plasticity of gonadotropes within the anterior pituitary glands of female mice.

摘要

垂体前叶的分泌细胞可能形成有组织的、交错的网络,以适应不同生理环境下内分泌变化。对于促性腺激素细胞来说,这可能反映了一种应对不同雌性生殖阶段急性变化的策略。本研究在具有明显不同激素阶段的雌性小鼠中检查了促性腺激素细胞:青春期前、青春期后和哺乳期。通过对固定和活垂体切片进行成像,在整个群体和单个细胞水平上检查了促性腺激素细胞的可塑性。使用一种可识别选择性荧光促性腺激素细胞的模型动物,具有专门定义促性腺激素细胞可塑性的特殊优势。相对于血管的活体分析显示,在不同的生理状态下,促性腺激素细胞的分布存在显著差异。使用活切片进行的视频显微镜研究表明,促性腺激素细胞在外源 GnRH 刺激下发生了运动和突起等可塑性变化。由于来自上升的雌二醇水平的正反馈对于为 LH 激增启动垂体前叶非常重要,实验提供了雌二醇对促性腺激素细胞中 GnRH 信号的影响的证据。本文中的实验为雌性小鼠垂体前叶促性腺激素细胞的潜在可塑性提供了新的见解。

相似文献

1
Gonadotrope plasticity at cellular and population levels.
Endocrinology. 2012 Oct;153(10):4729-39. doi: 10.1210/en.2012-1360. Epub 2012 Aug 14.
2
Plasticity of Anterior Pituitary Gonadotrope Cells Facilitates the Pre-Ovulatory LH Surge.
Front Endocrinol (Lausanne). 2021 Feb 4;11:616053. doi: 10.3389/fendo.2020.616053. eCollection 2020.
4
Molecular Plasticity of Male and Female Murine Gonadotropes Revealed by mRNA Sequencing.
Endocrinology. 2016 Mar;157(3):1082-93. doi: 10.1210/en.2015-1836. Epub 2015 Dec 17.
5
Functional characterization of genetically labeled gonadotropes.
Endocrinology. 2008 Jun;149(6):2701-11. doi: 10.1210/en.2007-1502. Epub 2008 Mar 6.
6
Neuroendocrine plasticity in the anterior pituitary: gonadotropin-releasing hormone-mediated movement in vitro and in vivo.
Endocrinology. 2007 Apr;148(4):1736-44. doi: 10.1210/en.2006-1153. Epub 2007 Jan 11.
7
Restoration of the LH secretory response in desensitized gonadotropes.
Mol Cell Endocrinol. 1988 Sep;59(1-2):101-10. doi: 10.1016/0303-7207(88)90200-6.
8
Effects of diethylstilbestrol on luteinizing hormone-producing cells in the mouse anterior pituitary.
Exp Biol Med (Maywood). 2014 Mar;239(3):311-9. doi: 10.1177/1535370213519722. Epub 2014 Feb 12.
10
Plasticity in medaka gonadotropes via cell proliferation and phenotypic conversion.
J Endocrinol. 2020 Apr;245(1):21-37. doi: 10.1530/JOE-19-0405.

引用本文的文献

1
Recent Advances in the Understanding of Gonadotrope Lineage Differentiation in the Developing Pituitary.
Neuroendocrinology. 2025;115(2):195-210. doi: 10.1159/000542513. Epub 2024 Nov 11.
2
Pituitary stem cells: past, present and future perspectives.
Nat Rev Endocrinol. 2024 Feb;20(2):77-92. doi: 10.1038/s41574-023-00922-4. Epub 2023 Dec 15.
3
The Neurod1/4-Ntrk3-Src pathway regulates gonadotrope cell adhesion and motility.
Cell Death Discov. 2023 Sep 1;9(1):327. doi: 10.1038/s41420-023-01615-7.
4
Musashi Exerts Control of Gonadotrope Target mRNA Translation During the Mouse Estrous Cycle.
Endocrinology. 2023 Aug 1;164(9). doi: 10.1210/endocr/bqad113.
5
AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis.
Front Endocrinol (Lausanne). 2023 Jun 15;14:1212104. doi: 10.3389/fendo.2023.1212104. eCollection 2023.
7
Postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary gland.
Biol Sex Differ. 2022 Oct 11;13(1):57. doi: 10.1186/s13293-022-00467-7.
9
Plasticity of Anterior Pituitary Gonadotrope Cells Facilitates the Pre-Ovulatory LH Surge.
Front Endocrinol (Lausanne). 2021 Feb 4;11:616053. doi: 10.3389/fendo.2020.616053. eCollection 2020.
10
Functional Pituitary Networks in Vertebrates.
Front Endocrinol (Lausanne). 2021 Jan 27;11:619352. doi: 10.3389/fendo.2020.619352. eCollection 2020.

本文引用的文献

2
Related pituitary cell lineages develop into interdigitated 3D cell networks.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12515-20. doi: 10.1073/pnas.1105929108. Epub 2011 Jul 11.
3
Endocrine cells and blood vessels work in tandem to generate hormone pulses.
J Mol Endocrinol. 2011 Aug 25;47(2):R59-66. doi: 10.1530/JME-11-0035. Print 2011 Oct.
6
Pituitary growth hormone network responses are sexually dimorphic and regulated by gonadal steroids in adulthood.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21878-83. doi: 10.1073/pnas.1010849107. Epub 2010 Nov 22.
7
Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4465-70. doi: 10.1073/pnas.0902599107. Epub 2010 Feb 16.
9
Functional characterization of genetically labeled gonadotropes.
Endocrinology. 2008 Jun;149(6):2701-11. doi: 10.1210/en.2007-1502. Epub 2008 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验