Institute for Neural Signal Transduction, Center for Molecular Neurobiology, 20251 Hamburg, Germany.
Endocrinology. 2012 Oct;153(10):4729-39. doi: 10.1210/en.2012-1360. Epub 2012 Aug 14.
Hormone-secreting cells within the anterior pituitary gland may form organized and interdigitated networks that adapt to changing endocrine conditions in different physiological contexts. For gonadotropes, this might reflect a strategy to cope with acute changes throughout different female reproductive stages. The current study examined gonadotropes in female mice at characteristically different hormonal stages: prepubertal, postpubertal, and lactating. Gonadotrope plasticity was examined at the level of the whole population and single cells at different stages by imaging both fixed and live pituitary slices. The use of a model animal providing for the identification of selectively fluorescent gonadotropes allowed the particular advantage of defining cellular plasticity specifically for gonadotropes. In vivo analyses of gonadotropes relative to vasculature showed significantly different gonadotrope distributions across physiological states. Video microscopy studies using live slices ex vivo demonstrated pituitary cell plasticity in the form of movements and protrusions in response to GnRH. As positive feedback from rising estradiol levels is important for priming the anterior pituitary gland for the LH surge, experiments provide evidence of estradiol effects on GnRH signaling in gonadotropes. The experiments presented herein provide new insight into potential plasticity of gonadotropes within the anterior pituitary glands of female mice.
垂体前叶的分泌细胞可能形成有组织的、交错的网络,以适应不同生理环境下内分泌变化。对于促性腺激素细胞来说,这可能反映了一种应对不同雌性生殖阶段急性变化的策略。本研究在具有明显不同激素阶段的雌性小鼠中检查了促性腺激素细胞:青春期前、青春期后和哺乳期。通过对固定和活垂体切片进行成像,在整个群体和单个细胞水平上检查了促性腺激素细胞的可塑性。使用一种可识别选择性荧光促性腺激素细胞的模型动物,具有专门定义促性腺激素细胞可塑性的特殊优势。相对于血管的活体分析显示,在不同的生理状态下,促性腺激素细胞的分布存在显著差异。使用活切片进行的视频显微镜研究表明,促性腺激素细胞在外源 GnRH 刺激下发生了运动和突起等可塑性变化。由于来自上升的雌二醇水平的正反馈对于为 LH 激增启动垂体前叶非常重要,实验提供了雌二醇对促性腺激素细胞中 GnRH 信号的影响的证据。本文中的实验为雌性小鼠垂体前叶促性腺激素细胞的潜在可塑性提供了新的见解。