Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
J Chem Phys. 2012 Aug 14;137(6):064507. doi: 10.1063/1.4742340.
Raman spectroscopy and synchrotron x-ray diffraction measurements of ammonia (NH(3)) in laser-heated diamond anvil cells, at pressures up to 60 GPa and temperatures up to 2500 K, reveal that the melting line exhibits a maximum near 37 GPa and intermolecular proton fluctuations substantially increase in the fluid with pressure. We find that NH(3) is chemically unstable at high pressures, partially dissociating into N(2) and H(2). Ab initio calculations performed in this work show that this process is thermodynamically driven. The chemical reactivity dramatically increases at high temperature (in the fluid phase at T > 1700 K) almost independent of pressure. Quenched from these high temperature conditions, NH(3) exhibits structural differences from known solid phases. We argue that chemical reactivity of NH(3) competes with the theoretically predicted dynamic dissociation and ionization.
拉曼光谱和同步辐射 X 射线衍射测量表明,在激光加热的金刚石压腔中,氨(NH(3))在高达 60 GPa 的压力和高达 2500 K 的温度下,其熔融线在近 37 GPa 处出现最大值,分子间质子波动在流体中随压力显著增加。我们发现 NH(3)在高压下化学不稳定,部分分解为 N(2)和 H(2)。本工作中的从头算计算表明,这一过程是由热力学驱动的。在高温下(T > 1700 K 的流体相中),化学反应性几乎与压力无关,急剧增加。从这些高温条件下淬火,NH(3)表现出与已知固相的结构差异。我们认为,NH(3)的化学反应性与理论预测的动态解离和电离相竞争。