Suppr超能文献

细菌病原体劫持 Rab GTPases 以建立细胞内小生境。

Bacterial pathogens commandeer Rab GTPases to establish intracellular niches.

机构信息

Department of Biology, California State University, Northridge, Northridge, CA, USA.

出版信息

Traffic. 2012 Dec;13(12):1565-88. doi: 10.1111/tra.12000. Epub 2012 Sep 13.

Abstract

Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.

摘要

细胞内细菌病原体利用毒力因子(称为效应子)来抑制宿主细胞的降解,并建立生长和分化发生的细胞内小生境。在这里,我们描述了人类细菌病原体(包括衣原体;贝氏柯克斯体;幽门螺杆菌;嗜肺军团菌;李斯特菌;分枝杆菌;铜绿假单胞菌;沙门氏菌)调节内吞和外排 Rab GTPases 的机制,以在宿主细胞中茁壮成长。宿主细胞 Rab GTPases 对于病原体吞噬或内吞后的细胞内运输至关重要。在分子水平上,细菌效应子劫持 Rab 蛋白的功能以:逃避降解、将运输物定向到特定的细胞内位置,并垄断携带稳定小生境和/或细菌生长和分化所需分子的宿主囊泡。细菌效应子可以作为 Rab GTPases 的特异性受体,也可以作为酶,对 Rab 蛋白或内体膜脂质进行翻译后修饰,这些蛋白或脂质对于 Rab 功能是必需的。新出现的数据表明,细菌效应子的表达受到时间和空间的调节,并且多个毒力因子可能协同作用以篡夺 Rab GTPase 功能、改变信号传导并确保小生境建立和细胞内细菌生长,这使得该领域成为进一步研究的令人兴奋的领域。

相似文献

1
Bacterial pathogens commandeer Rab GTPases to establish intracellular niches.
Traffic. 2012 Dec;13(12):1565-88. doi: 10.1111/tra.12000. Epub 2012 Sep 13.
2
Taking control: Hijacking of Rab GTPases by intracellular bacterial pathogens.
Small GTPases. 2018 Mar 4;9(1-2):182-191. doi: 10.1080/21541248.2017.1336192. Epub 2017 Jul 5.
3
Manipulation of rab GTPase function by intracellular bacterial pathogens.
Microbiol Mol Biol Rev. 2007 Dec;71(4):636-52. doi: 10.1128/MMBR.00023-07.
4
The recycling endosome and bacterial pathogens.
Cell Microbiol. 2018 Jul;20(7):e12857. doi: 10.1111/cmi.12857. Epub 2018 May 30.
7
Rab32 restriction of intracellular bacterial pathogens.
Small GTPases. 2018 May 4;9(3):216-223. doi: 10.1080/21541248.2016.1219207. Epub 2016 Sep 20.
8
Effector AnkX Disrupts Host Cell Endocytic Recycling in a Phosphocholination-Dependent Manner.
Front Cell Infect Microbiol. 2017 Sep 8;7:397. doi: 10.3389/fcimb.2017.00397. eCollection 2017.
9
The Rab-binding Profiles of Bacterial Virulence Factors during Infection.
J Biol Chem. 2016 Mar 11;291(11):5832-5843. doi: 10.1074/jbc.M115.700930. Epub 2016 Jan 11.
10
Arginine GlcNAcylation of Rab small GTPases by the pathogen Salmonella Typhimurium.
Commun Biol. 2020 Jun 5;3(1):287. doi: 10.1038/s42003-020-1005-2.

引用本文的文献

1
The hidden dancers in water: the symbiotic mystery of and free-living amoebae.
Front Microbiol. 2025 Aug 8;16:1634806. doi: 10.3389/fmicb.2025.1634806. eCollection 2025.
2
EspH utilizes phosphoinositide and Rab binding domains to interact with plasma membrane infection sites and Rab GTPases.
Gut Microbes. 2024 Jan-Dec;16(1):2400575. doi: 10.1080/19490976.2024.2400575. Epub 2024 Sep 23.
6
Prediction of Rab5B inhibitors through integrative in silico techniques.
Mol Divers. 2024 Aug;28(4):2547-2562. doi: 10.1007/s11030-023-10693-9. Epub 2023 Jul 28.
8
Deletion in KARLN intron 5 and predictive relationship with bovine tuberculosis and brucellosis infection phenotype.
Vet Res Commun. 2023 Jun;47(2):779-789. doi: 10.1007/s11259-022-10039-0. Epub 2022 Dec 10.
9
Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors.
Traffic. 2022 Aug;23(8):414-425. doi: 10.1111/tra.12860. Epub 2022 Jun 28.
10
Coxiella burnetii Plasmid Effector B Promotes LC3-II Accumulation and Contributes To Bacterial Virulence in a SCID Mouse Model.
Infect Immun. 2022 Jun 16;90(6):e0001622. doi: 10.1128/iai.00016-22. Epub 2022 May 19.

本文引用的文献

3
Mycobacterium tuberculosis-specific phagosome proteome and underlying signaling pathways.
J Proteome Res. 2012 May 4;11(5):2635-43. doi: 10.1021/pr300125t. Epub 2012 Apr 2.
4
Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome.
Mol Cell Proteomics. 2012 Jul;11(7):M111.016378. doi: 10.1074/mcp.M111.016378. Epub 2012 Mar 15.
5
Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5621-6. doi: 10.1073/pnas.1121161109. Epub 2012 Mar 12.
6
Multistep activation of the Helicobacter pylori effector CagA.
J Clin Invest. 2012 Apr;122(4):1192-5. doi: 10.1172/JCI61578. Epub 2012 Mar 1.
7
Structure of Salmonella effector protein SopB N-terminal domain in complex with host Rho GTPase Cdc42.
J Biol Chem. 2012 Apr 13;287(16):13348-55. doi: 10.1074/jbc.M111.331330. Epub 2012 Feb 23.
8
Mycobacterium avium-triggered diseases: pathogenomics.
Cell Microbiol. 2012 Jun;14(6):808-18. doi: 10.1111/j.1462-5822.2012.01776.x. Epub 2012 Mar 12.
9
Secretive bacterial pathogens and the secretory pathway.
Traffic. 2012 Sep;13(9):1187-97. doi: 10.1111/j.1600-0854.2012.01344.x. Epub 2012 Mar 13.
10
Salmonella's long-term relationship with its host.
FEMS Microbiol Rev. 2012 May;36(3):600-15. doi: 10.1111/j.1574-6976.2012.00332.x. Epub 2012 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验