Department of Earth Sciences, Uppsala University, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
Dev Genes Evol. 2012 Sep;222(5):299-309. doi: 10.1007/s00427-012-0413-9. Epub 2012 Aug 18.
Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.
节肢动物表现出两种发育模式。在所谓的长 germ 发育模式(以果蝇 Drosophila 为例)中,所有的体节几乎同时从一个预先存在的细胞区域形成。相比之下,在所谓的短 germ 发育模式(以绝大多数节肢动物为例)中,只有前体节类似果蝇一样进行模式化,而后体节则按照单个或双个节段周期性地从前体节添加区(SAZ)添加。SAZ 中体节的添加由基因活性的动态波控制。最近对蜘蛛的研究表明,类似的动态过程涉及到体节极性基因(SPG) hedgehog(hh)的表达,参与了前头部节段的形成。本研究表明,在多足类动物 Glomeris marginata 中,hh 的早期表达也在前部广泛区域,但这个区域只对应于眼和触角节。与蜘蛛不同的是,它不代表后相邻体节的表达。相比之下,hh 的前体模式在 Glomeris 和昆虫中是保守的。所有研究的多足类 SPGs 和相关因子在前颏(三叉神经)节中延迟表达。这种延迟仅在昆虫和多足类中发现,而在螯肢动物、甲壳动物和有爪动物中没有发现。因此,它可能代表了一个将昆虫和多足类联系在一起的 synapomorphy(Atelocerata 假说),与认为甲壳动物和昆虫具有姐妹关系的主流观点(Pancrustacea 假说)相矛盾。在 Glomeris 胚胎中,SPG engrailed 首先在前颏节中表达。这一特征在所有节肢动物类群的代表中都得到了保守,这表明前颏节可能在前端模式化中具有特殊功能。