Suppr超能文献

石墨烯纳米薄片和量子点的量子力学性质。

Quantum mechanical properties of graphene nano-flakes and quantum dots.

机构信息

Applied Physics, RMIT University, Melbourne, Victoria 3000, Australia.

出版信息

Nanoscale. 2012 Nov 7;4(21):6761-7. doi: 10.1039/c2nr31354e. Epub 2012 Aug 17.

Abstract

In recent years considerable attention has been given to methods for modifying and controlling the electronic and quantum mechanical properties of graphene quantum dots. However, as these types of properties are indirect consequences of the wavefunction of the material, a more efficient way of determining properties may be to engineer the wavefunction directly. One way of doing this may be via deliberate structural modifications, such as producing graphene nanostructures with specific sizes and shapes. In this paper we use quantum mechanical simulations to determine whether the wavefunction, quantified via the distribution of the highest occupied molecular orbital, has a direct and reliable relationship to the physical structure, and whether structural modifications can be useful for wavefunction engineering. We find that the wavefunction of small molecular graphene structures can be different from those of larger nanoscale counterparts, and the distribution of the highest occupied molecular orbital is strongly affected by the geometric shape (but only weakly by edge and corner terminations). This indicates that both size and shape may be more useful parameters in determining quantum mechanical and electronic properties, which should then be reasonably robust against variations in the chemical passivation or functionalisation around the circumference.

摘要

近年来,人们对修饰和控制石墨烯量子点的电子和量子力学性质的方法给予了相当大的关注。然而,由于这些性质是材料波函数的间接结果,因此更有效的确定性质的方法可能是直接设计波函数。一种方法可能是通过故意的结构修改,例如制造具有特定尺寸和形状的石墨烯纳米结构。在本文中,我们使用量子力学模拟来确定通过最高占据分子轨道的分布来量化的波函数是否与物理结构有直接和可靠的关系,以及结构修改是否可用于波函数工程。我们发现,小分子石墨烯结构的波函数可能与较大的纳米级对应物不同,并且最高占据分子轨道的分布受几何形状强烈影响(但仅受边缘和角终止的弱影响)。这表明,大小和形状可能是确定量子力学和电子性质的更有用参数,并且应该对圆周周围的化学钝化或功能化的变化具有相当的鲁棒性。

相似文献

1
Quantum mechanical properties of graphene nano-flakes and quantum dots.
Nanoscale. 2012 Nov 7;4(21):6761-7. doi: 10.1039/c2nr31354e. Epub 2012 Aug 17.
2
Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots.
J Phys Condens Matter. 2013 Feb 27;25(8):085502. doi: 10.1088/0953-8984/25/8/085502. Epub 2013 Jan 23.
3
Electronic properties of a graphene antidot in magnetic fields.
J Phys Condens Matter. 2010 Sep 22;22(37):375302. doi: 10.1088/0953-8984/22/37/375302. Epub 2010 Aug 31.
4
Nanopatterned graphene quantum dots as building blocks for quantum cellular automata.
Nanoscale. 2011 Oct 5;3(10):4201-5. doi: 10.1039/c1nr10489f. Epub 2011 Aug 25.
6
Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
Nanotechnology. 2009 Sep 16;20(37):375704. doi: 10.1088/0957-4484/20/37/375704. Epub 2009 Aug 26.
7
Solution-processable graphene quantum dots.
Chemphyschem. 2013 Aug 26;14(12):2627-40. doi: 10.1002/cphc.201300111. Epub 2013 Jun 3.
9
Planar Dirac electrons in magnetic quantum dots.
J Phys Condens Matter. 2012 May 30;24(21):215303. doi: 10.1088/0953-8984/24/21/215303. Epub 2012 Apr 27.
10
Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices.
Chem Commun (Camb). 2012 Apr 18;48(31):3686-99. doi: 10.1039/c2cc00110a. Epub 2012 Mar 13.

引用本文的文献

1
2
Optoelectronic and nonlinear optical properties of triarylamine helicenes: a DFT study.
J Mol Model. 2014 Dec;20(12):2535. doi: 10.1007/s00894-014-2535-7. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验