Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul, Turkey.
Bioprocess Biosyst Eng. 2013 Apr;36(4):399-405. doi: 10.1007/s00449-012-0796-z. Epub 2012 Aug 18.
This study aims at evaluating the performance of a two-chambered continuously fed microbial fuel cell with new Ti-TiO₂ electrodes for bioelectricity generation from young landfill leachate at varying strength of wastewater (1-50 COD g/L) and hydraulic retention time (HRT, 0.25-2 days). The COD removal efficiency in the MFC increased with time and reached 45 % at full-strength leachate (50 g/L COD) feeding. The current generation increased with increasing leachate strength and decreasing HRT up to organic loading rate of 100 g COD/L/day. The maximum current density throughout the study was 11 A/m² at HRT of 0.5 day and organic loading rate of 67 g COD/L/day. Coulombic efficiency (CE) decreased from 57 % at feed COD concentration of 1 g/L to less than 1 % when feed COD concentration was 50 g/L. Increase in OLR resulted in increase in power output but decrease in CE.
本研究旨在评估一种具有新型 Ti-TiO₂ 电极的双室连续流微生物燃料电池在不同废水强度(1-50 COD g/L)和水力停留时间(HRT,0.25-2 天)下从年轻垃圾渗滤液中产生生物电能的性能。在全强度渗滤液(50 g/L COD)进料时,MFC 中的 COD 去除效率随时间的增加而增加,达到 45%。电流生成随渗滤液强度的增加和 HRT 的减小而增加,最大有机负荷率为 100 g COD/L/天。在整个研究过程中,最大电流密度为 11 A/m²,HRT 为 0.5 天,有机负荷率为 67 g COD/L/天。当进料 COD 浓度为 50 g/L 时,库仑效率(CE)从进料 COD 浓度为 1 g/L 时的 57%降低到小于 1%。OLR 的增加导致功率输出增加,但 CE 降低。