State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China.
Biomaterials. 2012 Nov;33(33):8569-78. doi: 10.1016/j.biomaterials.2012.07.063. Epub 2012 Aug 17.
Polymeric nanoparticles have been widely applied to oral delivery of protein drugs, however, few studies focused on the systematical elucidation of the size-dependent oral absorption mechanism with well-defined polymeric nanoparticles. Rhodamine B labeled carboxylated chitosan grafted nanoparticles (RhB-CCNP) with different particle sizes (300, 600, and 1000 nm) and similar Zeta potentials (-35 mV) were developed. FITC labeled bovine serum albumin (FITC-BSA) was encapsulated into RhB-CCNP to form drug loaded polymeric nanoparticles (RhB-CCNP-BSA). RhB-CCNP-BSA with uniform particle size and similar surface charge possessed desired structural stability in simulated physiological environment to substantially guarantee the validation of elucidation on size-dependent absorption mechanisms of polymeric nanoparticles using in vitro, in situ, and ex vivo models. RhB-CCNP-BSA with smaller sizes (300 nm) demonstrated elevated intestinal absorption, as mechanistically evidenced by higher mucoadhesion in rat ileum, release amount of the payload into the mucus layer, Caco-2 cell internalization, transport across Caco-2 cell monolayers and rat ileum, and systemic biodistribution after oral gavage. Peyer's patches could play a role in the mucoadhesion of nanoparticles, resulting in their close association with the intestinal absorption of nanoparticles. These results provided guidelines for the rational design of oral nanocarriers for protein drugs in terms of particle size.
聚合物纳米粒已广泛应用于蛋白质类药物的口服给药系统,然而,很少有研究系统地阐明具有明确粒径的聚合物纳米粒的尺寸依赖性口服吸收机制。本研究制备了不同粒径(300nm、600nm 和 1000nm)、相同 Zeta 电位(-35mV)的羧基化壳聚糖接枝聚合物纳米粒(RhB-CCNP)。将异硫氰酸荧光素标记牛血清白蛋白(FITC-BSA)包封于 RhB-CCNP 中,形成载药聚合物纳米粒(RhB-CCNP-BSA)。RhB-CCNP-BSA 具有均匀的粒径和相似的表面电荷,在模拟生理环境中具有良好的结构稳定性,可确保在体外、原位和在体模型中对聚合物纳米粒的尺寸依赖性吸收机制进行阐明。粒径较小的(300nm)RhB-CCNP-BSA 表现出更高的肠道吸收,这在机制上表现为在大鼠空肠中具有更高的黏膜黏附性、载药量在黏液层中的释放量、Caco-2 细胞内化、跨 Caco-2 细胞单层和大鼠空肠的转运以及口服灌胃后的系统分布。派尔集合淋巴结可能在纳米粒的黏膜黏附中起作用,从而使它们与纳米粒的肠道吸收密切相关。这些结果为基于粒径的蛋白质类药物口服纳米载体的合理设计提供了指导。