IEEE Trans Med Imaging. 2012 Nov;31(11):2108-19. doi: 10.1109/TMI.2012.2213304. Epub 2012 Aug 15.
The long-standing interior problem has important mathematical and practical implications. The recently developed interior tomography methods have produced encouraging results. A particular scenario for theoretically exact interior reconstruction from truncated projections is that there is a known sub-region in the ROI. In this paper, we improve a novel continuous singular value decomposition (SVD) method for interior reconstruction assuming a known sub-region. First, two sets of orthogonal eigen-functions are calculated for the Hilbert and image spaces respectively. Then, after the interior Hilbert data are calculated from projection data through the ROI, they are projected onto the eigen-functions in the Hilbert space, and an interior image is recovered by a linear combination of the eigen-functions with the resulting coefficients. Finally, the interior image is compensated for the ambiguity due to the null space utilizing the prior sub-region knowledge. Experiments with simulated and real data demonstrate the advantages of our approach relative to the POCS type interior reconstructions.
长期存在的内部问题具有重要的数学和实际意义。最近开发的内部层析成像方法取得了令人鼓舞的结果。从截断投影进行理论上精确的内部重建的一个特殊情况是 ROI 中有一个已知的子区域。在本文中,我们改进了一种新的连续奇异值分解 (SVD) 方法,用于假设已知子区域的内部重建。首先,分别为 Hilbert 空间和图像空间计算两组正交特征函数。然后,通过 ROI 从投影数据计算内部 Hilbert 数据后,将其投影到 Hilbert 空间中的特征函数上,并通过具有所得系数的特征函数的线性组合来恢复内部图像。最后,利用先验子区域知识补偿由于零空间引起的歧义。模拟和真实数据的实验表明,我们的方法相对于 POCS 类型的内部重建具有优势。