Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
J Phys Chem B. 2012 Sep 13;116(36):11041-5. doi: 10.1021/jp304669b. Epub 2012 Aug 30.
This paper reports on a significant improvement of a new structural biology approach designed to probe the secondary structure of membrane proteins using the pulsed EPR technique of electron spin echo envelope modulation (ESEEM) spectroscopy. Previously, we showed that we could characterize an α-helical secondary structure with ESEEM spectroscopy using a (2)H-labeled Val side chain coupled with site-directed spin-labeling (SDSL). In order to further develop this new approach, molecular dynamic (MD) simulations were conducted on several different hydrophobic residues that are commonly found in membrane proteins. (2)H-SL distance distributions from the MD results indicated that (2)H-labeled Leu was a very strong candidate to significantly improve this ESEEM approach. In order to test this hypothesis, the secondary structure of the α-helical M2δ peptide of the acetylcholine receptor (AChR) incorporated into a bicelle was investigated with (2)H-labeled Leu d(10) at position 10 (i) and nitroxide spin labels positioned 1, 2, 3, and 4 residues away (denoted i+1 to i+4) with ESEEM spectroscopy. The ESEEM data reveal a unique pattern that is characteristic of an α-helix (3.6 residues per turn). Strong (2)H modulation was detected for the i+3 and i+4 samples, but not for the i+2 sample. The (2)H modulation depth observed for (2)H-labeled d(10) Leu was significantly enhanced (×4) when compared to previous ESEEM measurements that used (2)H-labeled d(8) Val. Computational studies indicate that deuterium nuclei on the Leu side chain are closer to the spin label when compared to Val. The enhancement of (2)H modulation and the corresponding Fourier Transform (FT) peak intensity for (2)H-labeled Leu significantly reduces the ESEEM data acquisition time for Leu when compared to Val. This research demonstrates that a different (2)H-labeled amino acid residue can be used as an efficient ESEEM probe further substantiating this important biophysical technique. Finally, this new method can provide pertinent qualitative structural information on membrane proteins in a short time (few minutes) at low sample concentrations (~50 μM).
本文报道了一种新的结构生物学方法的显著改进,该方法旨在使用电子自旋回波包络调制(ESEEM)光谱的脉冲 EPR 技术探测膜蛋白的二级结构。此前,我们表明我们可以使用(2)H 标记的 Val 侧链与定点自旋标记(SDSL)相结合,使用 ESEEM 光谱来表征 α-螺旋二级结构。为了进一步发展这种新方法,对几种常见于膜蛋白中的不同疏水性残基进行了分子动力学(MD)模拟。MD 结果的(2)H-SL 距离分布表明,(2)H 标记的 Leu 是显著改善这种 ESEEM 方法的非常有前途的候选物。为了验证这一假设,用(2)H 标记的 Leu d(10)在位置 10(i)和位于 1、2、3 和 4 个残基处的氮氧化物自旋标记(分别表示为 i+1 到 i+4)对乙酰胆碱受体(AChR)的 α-螺旋 M2δ 肽进行了二级结构研究。ESEEM 光谱揭示了一种独特的模式,其特征是α-螺旋(每转 3.6 个残基)。对于 i+3 和 i+4 样品检测到强烈的(2)H 调制,但对于 i+2 样品则没有。与以前使用(2)H 标记的 d(8)Val 的 ESEEM 测量相比,(2)H 标记的 d(10)Leu 的(2)H 调制深度观察值显著增强(×4)。计算研究表明,与 Val 相比,Leu 侧链上的氘核更接近自旋标记。与 Val 相比,(2)H 标记 Leu 的(2)H 调制增强和相应的傅里叶变换(FT)峰强度显著降低了 Leu 的 ESEEM 数据采集时间。这项研究表明,可以使用不同的(2)H 标记氨基酸残基作为有效的 ESEEM 探针,进一步证实了这种重要的生物物理技术。最后,这种新方法可以在低样品浓度(约 50 μM)下,在短时间(几分钟)内提供有关膜蛋白的相关定性结构信息。