Suppr超能文献

定量蛋白质组学揭示 ATM 激酶依赖性 DNA 损伤反应复合物的交换。

Quantitative proteomics reveal ATM kinase-dependent exchange in DNA damage response complexes.

机构信息

Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.

出版信息

J Proteome Res. 2012 Oct 5;11(10):4983-91. doi: 10.1021/pr3005524. Epub 2012 Sep 18.

Abstract

ATM is a protein kinase that initiates a well-characterized signaling cascade in cells exposed to ionizing radiation (IR). However, the role for ATM in coordinating critical protein interactions and subsequent exchanges within DNA damage response (DDR) complexes is unknown. We combined SILAC-based tandem mass spectrometry and a subcellular fractionation protocol to interrogate the proteome of irradiated cells treated with or without the ATM kinase inhibitor KU55933. We developed an integrative network analysis to identify and prioritize proteins that were responsive to KU55933, specifically in chromatin, and that were also enriched for physical interactions with known DNA repair proteins. This analysis identified 53BP1 and annexin A1 (ANXA1) as strong candidates. Using fluorescence recovery after photobleaching, we found that the exchange of GFP-53BP1 in DDR complexes decreased with KU55933. Further, we found that ANXA1 knockdown sensitized cells to IR via a mechanism that was not potentiated by KU55933. Our study reveals a role for ATM kinase activity in the dynamic exchange of proteins in DDR complexes and identifies a role for ANXA1 in cellular radioprotection.

摘要

ATM 是一种蛋白激酶,可在细胞暴露于电离辐射 (IR) 时启动一个特征明确的信号级联反应。然而,ATM 在协调关键蛋白相互作用以及随后的 DNA 损伤反应 (DDR) 复合物内交换中的作用尚不清楚。我们结合 SILAC 基于串联质谱和亚细胞分级分离方案来检测用或不用 ATM 激酶抑制剂 KU55933 处理的辐照细胞的蛋白质组。我们开发了一种整合网络分析来识别和优先考虑对 KU55933 有反应的蛋白质,特别是在染色质中,并且与已知的 DNA 修复蛋白具有丰富的物理相互作用。该分析确定了 53BP1 和膜联蛋白 A1(ANXA1)为强候选物。通过光漂白荧光恢复,我们发现 DDR 复合物中 GFP-53BP1 的交换随着 KU55933 的增加而减少。此外,我们发现 ANXA1 的敲低通过一种不因 KU55933 而增强的机制使细胞对 IR 敏感。我们的研究揭示了 ATM 激酶活性在 DDR 复合物中蛋白动态交换中的作用,并确定了 ANXA1 在细胞放射防护中的作用。

相似文献

1
Quantitative proteomics reveal ATM kinase-dependent exchange in DNA damage response complexes.
J Proteome Res. 2012 Oct 5;11(10):4983-91. doi: 10.1021/pr3005524. Epub 2012 Sep 18.
2
The role of ATM and 53BP1 as predictive markers in cervical cancer.
Int J Cancer. 2012 Nov 1;131(9):2056-66. doi: 10.1002/ijc.27488. Epub 2012 Mar 29.
3
Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling.
DNA Repair (Amst). 2008 Mar 1;7(3):405-17. doi: 10.1016/j.dnarep.2007.11.011. Epub 2008 Jan 8.
4
ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage.
Sci Signal. 2010 Dec 7;3(151):rs3. doi: 10.1126/scisignal.2001034.
6
Selenium compounds activate ATM-dependent DNA damage response via the mismatch repair protein hMLH1 in colorectal cancer cells.
J Biol Chem. 2010 Oct 22;285(43):33010-33017. doi: 10.1074/jbc.M110.137406. Epub 2010 Aug 6.
7
Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1.
Biochem Pharmacol. 2012 Mar 15;83(6):747-57. doi: 10.1016/j.bcp.2011.12.029. Epub 2011 Dec 29.
8
Protein-protein interactions occur between p53 phosphoforms and ATM and 53BP1 at sites of exogenous DNA damage.
Radiat Res. 2011 May;175(5):588-98. doi: 10.1667/RR2084.1. Epub 2011 Mar 1.
9
S1219 residue of 53BP1 is phosphorylated by ATM kinase upon DNA damage and required for proper execution of DNA damage response.
Biochem Biophys Res Commun. 2009 Jan 2;378(1):32-6. doi: 10.1016/j.bbrc.2008.10.150. Epub 2008 Nov 6.

引用本文的文献

1
ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus.
Cells. 2022 Jun 29;11(13):2057. doi: 10.3390/cells11132057.
2
Annexin A1 as a Regulator of Immune Response in Cancer.
Cells. 2021 Aug 30;10(9):2245. doi: 10.3390/cells10092245.
3
Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging.
Methods Mol Biol. 2017;1599:97-111. doi: 10.1007/978-1-4939-6955-5_8.
4
Quantitative and Dynamic Imaging of ATM Kinase Activity.
Methods Mol Biol. 2017;1596:131-145. doi: 10.1007/978-1-4939-6940-1_9.
5
RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.
DNA Repair (Amst). 2017 Apr;52:24-30. doi: 10.1016/j.dnarep.2017.02.004. Epub 2017 Feb 20.
7
Proteomics insights into DNA damage response and translating this knowledge to clinical strategies.
Proteomics. 2017 Feb;17(3-4). doi: 10.1002/pmic.201600018. Epub 2016 Dec 12.
8
MetaMass, a tool for meta-analysis of subcellular proteomics data.
Nat Methods. 2016 Oct;13(10):837-40. doi: 10.1038/nmeth.3967. Epub 2016 Aug 29.
10
Chromatin perturbations during the DNA damage response in higher eukaryotes.
DNA Repair (Amst). 2015 Dec;36:8-12. doi: 10.1016/j.dnarep.2015.09.002. Epub 2015 Sep 9.

本文引用的文献

2
Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications.
Genes Dev. 2011 Mar 1;25(5):409-33. doi: 10.1101/gad.2021311.
3
ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage.
Sci Signal. 2010 Dec 7;3(151):rs3. doi: 10.1126/scisignal.2001034.
4
The DNA damage response: making it safe to play with knives.
Mol Cell. 2010 Oct 22;40(2):179-204. doi: 10.1016/j.molcel.2010.09.019.
5
Transient ATM kinase inhibition disrupts DNA damage-induced sister chromatid exchange.
Sci Signal. 2010 Jun 1;3(124):ra44. doi: 10.1126/scisignal.2000758.
6
53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers.
Nat Struct Mol Biol. 2010 Jun;17(6):688-95. doi: 10.1038/nsmb.1831. Epub 2010 May 9.
7
53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks.
Cell. 2010 Apr 16;141(2):243-54. doi: 10.1016/j.cell.2010.03.012. Epub 2010 Apr 1.
8
Annexin-1 protects MCF7 breast cancer cells against heat-induced growth arrest and DNA damage.
Cancer Lett. 2010 Aug 1;294(1):111-7. doi: 10.1016/j.canlet.2010.01.026. Epub 2010 Feb 16.
9
NeMo: Network Module identification in Cytoscape.
BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S61. doi: 10.1186/1471-2105-11-S1-S61.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验