Suppr超能文献

可溶性鸟苷酸环化酶刺激剂 riociguat 可改善缺氧和 SU5416 诱导的大鼠肺动脉高压。

The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats.

机构信息

University of Giessen and Marburg Lung Center, Giessen, Germany.

出版信息

PLoS One. 2012;7(8):e43433. doi: 10.1371/journal.pone.0043433. Epub 2012 Aug 17.

Abstract

BACKGROUND

The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signal-transduction pathway is impaired in many cardiovascular diseases, including pulmonary arterial hypertension (PAH). Riociguat (BAY 63-2521) is a stimulator of sGC that works both in synergy with and independently of NO to increase levels of cGMP. The aims of this study were to investigate the role of NO-sGC-cGMP signaling in a model of severe PAH and to evaluate the effects of sGC stimulation by riociguat and PDE5 inhibition by sildenafil on pulmonary hemodynamics and vascular remodeling in severe experimental PAH.

METHODS AND RESULTS

Severe angioproliferative PAH was induced in rats by combined exposure to the vascular endothelial growth factor receptor antagonist SU5416 and hypoxia (SUHx). Twenty-one days thereafter rats were randomized to receive either riociguat (10 mg/kg/day), sildenafil (50 mg/kg/day) or vehicle by oral gavage, for 14 days until the day of the terminal hemodynamic measurements. Administration of riociguat or sildenafil significantly decreased right ventricular systolic pressure (RVSP). Riociguat significantly decreased RV hypertrophy (RVH) (0.55 ± 0.02, p<0.05), increased cardiac output (60.8 ± .8 mL/minute, p<0.05) and decreased total pulmonary resistance (4.03 ± 0.3 mmHg min(-1) ml(-1) 100 g BW, p<0.05), compared with sildenafil and vehicle. Both compounds significantly decreased the RV collagen content and improved RV function, but the effects of riociguat on tricuspid annular plane systolic excursion and RV myocardial performance were significantly better than those of sildenafil (p<0.05). The proportion of occluded arteries was significantly lower in animals receiving riociguat than in those receiving vehicle (p<0.05); furthermore, the neointima/media ratio was significantly lower in those receiving riociguat than in those receiving sildenafil or vehicle (p<0.05).

CONCLUSION

Riociguat and sildenafil significantly reduced RVSP and RVH, and improved RV function compared with vehicle. Riociguat had a greater effect on hemodynamics and RVH than sildenafil.

摘要

背景

一氧化氮(NO)-可溶性鸟苷酸环化酶(sGC)-环鸟苷酸(cGMP)信号转导通路在许多心血管疾病中受损,包括肺动脉高压(PAH)。利奥西呱(BAY 63-2521)是 sGC 的激动剂,它与 NO 协同作用并独立于 NO 发挥作用,增加 cGMP 的水平。本研究旨在探讨 NO-sGC-cGMP 信号在严重 PAH 模型中的作用,并评估 sGC 刺激利奥西呱和 PDE5 抑制西地那非对严重实验性 PAH 的肺血流动力学和血管重塑的影响。

方法和结果

通过联合暴露于血管内皮生长因子受体拮抗剂 SU5416 和缺氧(SUHx)在大鼠中诱导严重的血管增殖性 PAH。21 天后,大鼠随机接受利奥西呱(10 mg/kg/天)、西地那非(50 mg/kg/天)或载体口服灌胃,持续 14 天,直至进行终末血流动力学测量的那一天。利奥西呱或西地那非的给药显著降低右心室收缩压(RVSP)。利奥西呱显著降低 RV 肥厚(RVH)(0.55 ± 0.02,p<0.05),增加心输出量(60.8 ±.8 毫升/分钟,p<0.05)并降低总肺阻力(4.03 ± 0.3 mmHg min(-1) ml(-1) 100 g BW,p<0.05),与西地那非和载体相比。两种化合物均显著降低 RV 胶原含量并改善 RV 功能,但利奥西呱对三尖瓣环平面收缩期位移和 RV 心肌性能的影响明显优于西地那非(p<0.05)。接受利奥西呱治疗的动物中闭塞动脉的比例明显低于接受载体治疗的动物(p<0.05);此外,接受利奥西呱治疗的动物的新生内膜/中膜比值明显低于接受西地那非或载体治疗的动物(p<0.05)。

结论

与载体相比,利奥西呱和西地那非显著降低 RVSP 和 RVH,并改善 RV 功能。与西地那非相比,利奥西呱对血流动力学和 RVH 的影响更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9077/3422306/155c8e60df57/pone.0043433.g001.jpg

相似文献

4
Soluble guanylate cyclase stimulators in pulmonary hypertension.
Handb Exp Pharmacol. 2013;218:279-313. doi: 10.1007/978-3-642-38664-0_12.
5
BAY 41-2272 inhibits the development of chronic hypoxic pulmonary hypertension in rats.
Eur J Pharmacol. 2010 Nov 25;647(1-3):147-54. doi: 10.1016/j.ejphar.2010.08.032. Epub 2010 Sep 7.
8
Reduced vascular responses to soluble guanylyl cyclase but increased sensitivity to sildenafil in female rats with type 2 diabetes.
Am J Physiol Heart Circ Physiol. 2015 Jul 15;309(2):H297-304. doi: 10.1152/ajpheart.00079.2015. Epub 2015 May 8.

引用本文的文献

1
Contemporary treatment of right ventricular failure.
JHLT Open. 2024 Dec 30;7:100203. doi: 10.1016/j.jhlto.2024.100203. eCollection 2025 Feb.
2
Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats.
J Aerosol Med Pulm Drug Deliv. 2024 Oct;37(5):241-283. doi: 10.1089/jamp.2024.0016.
3
Analysis of riociguat and desmethyl riociguat by UPLC-MS/MS and its interaction with quercetin.
Front Pharmacol. 2024 Sep 18;15:1470377. doi: 10.3389/fphar.2024.1470377. eCollection 2024.
4
Exploring the pathogenesis of pulmonary vascular disease.
Front Med (Lausanne). 2024 Jul 10;11:1402639. doi: 10.3389/fmed.2024.1402639. eCollection 2024.
5
The nitric oxide-soluble guanylate cyclase-cGMP pathway in pulmonary hypertension: from PDE5 to soluble guanylate cyclase.
Eur Respir Rev. 2024 Mar 20;33(171). doi: 10.1183/16000617.0183-2023. Print 2024 Jan 31.
6
Drug repurposing-a promising approach for patients with angina but non-obstructive coronary artery disease (ANOCA).
Front Cardiovasc Med. 2023 Jun 16;10:1156456. doi: 10.3389/fcvm.2023.1156456. eCollection 2023.
7
Right ventricular failure in pulmonary hypertension: recent insights from experimental models.
Herz. 2023 Aug;48(4):285-290. doi: 10.1007/s00059-023-05180-8. Epub 2023 Apr 20.
10
Novel use of riociguat in infants with severe pulmonary arterial hypertension unable to wean from inhaled nitric oxide.
Front Pediatr. 2022 Dec 1;10:1014922. doi: 10.3389/fped.2022.1014922. eCollection 2022.

本文引用的文献

1
Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans.
Am J Respir Cell Mol Biol. 2012 May;46(5):582-91. doi: 10.1165/rcmb.2011-0296OC. Epub 2011 Dec 28.
3
Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension.
Respir Res. 2011 Jun 23;12(1):87. doi: 10.1186/1465-9921-12-87.
4
Mechanisms of disease: pulmonary arterial hypertension.
Nat Rev Cardiol. 2011 Jun 21;8(8):443-55. doi: 10.1038/nrcardio.2011.87.
6
Validation of high-resolution echocardiography and magnetic resonance imaging vs. high-fidelity catheterization in experimental pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2010 Sep;299(3):L401-12. doi: 10.1152/ajplung.00114.2010. Epub 2010 Jun 25.
7
Formation of plexiform lesions in experimental severe pulmonary arterial hypertension.
Circulation. 2010 Jun 29;121(25):2747-54. doi: 10.1161/CIRCULATIONAHA.109.927681. Epub 2010 Jun 14.
8
Therapeutic efficacy of azaindole-1 in experimental pulmonary hypertension.
Eur Respir J. 2010 Oct;36(4):808-18. doi: 10.1183/09031936.00140309. Epub 2010 Jun 7.
9
Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study.
Eur Respir J. 2010 Oct;36(4):792-9. doi: 10.1183/09031936.00182909. Epub 2010 Jun 7.
10
Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure.
Am J Physiol Lung Cell Mol Physiol. 2009 Dec;297(6):L1013-32. doi: 10.1152/ajplung.00217.2009. Epub 2009 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验