Department of Neurology, University of California, Davis, School of Medicine, USA.
Neurology. 2012 Sep 4;79(10):1033-40. doi: 10.1212/WNL.0b013e3182684683. Epub 2012 Aug 22.
To electrophysiologically characterize the Na(v)1.4 mutant N440K found in a Korean family with a syndrome combining symptoms of paramyotonia congenita, hyperkalemic periodic paralysis, and potassium-aggravated myotonia.
We characterized transiently expressed wild-type and mutant Na(v)1.4 using whole-cell voltage-clamp analysis.
N440K produced a significant depolarizing shift in the voltage dependence of fast inactivation and increased persistent current and acceleration in fast inactivation recovery, which gave rise to a 2-fold elevation in the dynamic availability of the mutant channels. In addition, the mutant channels required substantially longer and stronger depolarization to enter the slow-inactivated state.
N440K causes a gain of function consistent with skeletal muscle hyperexcitability as observed in individuals with the mutation. How the same mutation results in distinct phenotypes in the 2 kindreds remains to be determined.
对在一个韩国家族中发现的与先天性副肌强直、高钾周期性瘫痪和钾加重肌强直症状相结合的综合征相关的 Na(v)1.4 突变 N440K 进行电生理特性分析。
我们使用全细胞膜片钳分析对瞬时表达的野生型和突变型 Na(v)1.4 进行了特征描述。
N440K 导致快速失活的电压依赖性明显去极化偏移,并增加了持续电流和快速失活恢复的加速,从而导致突变通道的动态可用性增加了 2 倍。此外,突变通道需要更长和更强的去极化才能进入慢失活状态。
N440K 导致功能获得,与个体中观察到的骨骼肌兴奋性过高一致。同一突变如何导致两个家族中不同的表型仍有待确定。