Suppr超能文献

细菌的调控系统与其脂多糖修饰状态之间的相互控制。

Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide.

机构信息

Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Mol Cell. 2012 Sep 28;47(6):897-908. doi: 10.1016/j.molcel.2012.07.017. Epub 2012 Aug 23.

Abstract

Gram-negative bacteria often modify their lipopolysaccharide (LPS), thereby increasing resistance to antimicrobial agents and avoidance of the host immune system. However, it is unclear how bacteria adjust the levels and activities of LPS-modifying enzymes in response to the modification status of their LPS. We now address this question by investigating the major regulator of LPS modifications in Salmonella enterica. We report that the PmrA/PmrB system controls expression of a membrane peptide that inhibits the activity of LpxT, an enzyme responsible for increasing the LPS negative charge. LpxT's inhibition and the PmrA-dependent incorporation of positively charged L-4-aminoarabinose into the LPS decrease Fe(3+) binding to the bacterial cell. Because Fe(3+) is an activating ligand for the sensor PmrB, transcription of PmrA-dependent LPS-modifying genes is reduced. This mechanism enables bacteria to sense their cell surface by its effect on the availability of an inducing signal for the system regulating cell-surface modifications.

摘要

革兰氏阴性菌通常会修饰其脂多糖(LPS),从而提高对抗生素的耐药性并逃避宿主免疫系统的识别。然而,目前尚不清楚细菌如何根据 LPS 的修饰状态来调节 LPS 修饰酶的水平和活性。我们通过研究沙门氏菌中 LPS 修饰的主要调节因子来解决这个问题。我们报告称,PmrA/PmrB 系统控制着一种膜肽的表达,该膜肽抑制了 LpxT 的活性,LpxT 是负责增加 LPS 负电荷的酶。LpxT 的抑制作用以及 PmrA 依赖性地将带正电荷的 L-4-氨基阿拉伯糖掺入 LPS 中,减少了 LPS 与铁(III)的结合。因为铁(III)是传感器 PmrB 的激活配体,所以依赖于 PmrA 的 LPS 修饰基因的转录减少。这种机制使细菌能够通过其对调节细胞表面修饰的系统的诱导信号的可用性的影响来感知其细胞表面。

相似文献

9
Fe-dependent epistasis between the CpxR-activated loci and the PmrA-activated LPS modification loci in Salmonella enterica.
J Gen Appl Microbiol. 2017 Jan 25;62(6):286-296. doi: 10.2323/jgam.2016.05.005. Epub 2016 Nov 8.

引用本文的文献

2
Regulation of bacterial phosphorelay systems.细菌磷酸转移系统的调控
RSC Chem Biol. 2025 Jun 19. doi: 10.1039/d5cb00016e.
3
An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system.细菌PhoP/PhoQ双组分信号转导系统的最新综述。
Front Cell Infect Microbiol. 2025 Jan 31;15:1509037. doi: 10.3389/fcimb.2025.1509037. eCollection 2025.
7
Large Roles of Small Proteins.小分子的大作用。
Annu Rev Microbiol. 2024 Nov;78(1):1-22. doi: 10.1146/annurev-micro-112723-083001. Epub 2024 Nov 7.

本文引用的文献

5
An expanding universe of small proteins.小分子蛋白的不断扩展的领域。
Curr Opin Microbiol. 2011 Apr;14(2):167-73. doi: 10.1016/j.mib.2011.01.007. Epub 2011 Feb 20.
8
Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide.膜肽对 PhoQ/PhoP 信号系统的反馈抑制
PLoS Genet. 2009 Dec;5(12):e1000788. doi: 10.1371/journal.pgen.1000788. Epub 2009 Dec 24.
10
MzrA: a novel modulator of the EnvZ/OmpR two-component regulon.MzrA:EnvZ/OmpR双组分调控子的新型调节因子。
Mol Microbiol. 2009 Jun;72(6):1408-22. doi: 10.1111/j.1365-2958.2009.06728.x. Epub 2009 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验