Suppr超能文献

在纤维构建体中创建 3D 血管生成生长因子梯度以引导快速血管生成。

Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis.

机构信息

Department of Materials Science & Engineering, The Ohio State University, Columbus, OH, USA.

出版信息

Biomacromolecules. 2012 Oct 8;13(10):3262-71. doi: 10.1021/bm301029a. Epub 2012 Sep 4.

Abstract

Fast angiogenesis in 3D fibrous constructs that mimic the morphology of the extracellular matrix remains challenging due to limited porosity in the densely packed constructs. We investigated whether mimicking the in vivo chemotaxis microenvironment for native blood vessel formation would stimulate angiogenesis in the fibrous constructs. The chemotaxis microenvironment was created by introducing 3D angiogenic growth factor gradients into the constructs. We have developed a technique that can quickly fabricate (∼40 min) such 3D gradients by simultaneously electrospinning polycaprolactone (PCL) fibers, encapsulating gradient amount of bFGF (stabilized by heparin) into poly(lactide-co-glycolide) (PLGA) microspheres, and electrospraying the microspheres into PCL fibers. Gradient formation was confirmed by fluorescence microscopy. Gradients with different steepnesses were obtained by modulating the initial concentration of the bFGF solution. All of the constructs were able to sustainedly release bioactive bFGF over a 28 day period. The release kinetics was dependent on the bFGF loading and steepness of the gradient. In vitro cell migration study demonstrated that bFGF gradients significantly increased the depth of cell migration. To assess the efficacy of bFGF gradients in inducing angiogenesis, we implanted constructs subcutaneously using mouse model. bFGF gradients significantly promoted cell penetration into the constructs. After 10 days of implantation, a high density of mature blood vessels (positive to both CD31 and α-SMA) were formed in the constructs. Vessel density was increased with the increase in steepness of the bFGF gradient. These gradient constructs may have potential to engineer vascularized tissues for various applications.

摘要

由于密集堆积的构建体中孔隙度有限,因此,快速形成类似于细胞外基质形态的 3D 纤维状构建体中的血管生成仍然具有挑战性。我们研究了模拟体内趋化微环境是否会刺激纤维状构建体中的血管生成。趋化微环境是通过向构建体中引入 3D 血管生成生长因子梯度来创建的。我们已经开发出一种技术,该技术可以通过同时静电纺丝聚己内酯(PCL)纤维、将不同量的 bFGF(肝素稳定)包封到聚丙交酯-乙交酯共聚物(PLGA)微球中,并将微球电喷到 PCL 纤维上来快速制备(约 40 分钟)这样的 3D 梯度。梯度形成通过荧光显微镜确认。通过调节 bFGF 溶液的初始浓度可以获得具有不同陡度的梯度。所有的构建体都能够在 28 天的时间内持续释放具有生物活性的 bFGF。释放动力学取决于 bFGF 的负载量和梯度的陡度。体外细胞迁移研究表明,bFGF 梯度显著增加了细胞迁移的深度。为了评估 bFGF 梯度在诱导血管生成方面的功效,我们使用小鼠模型将构建体皮下植入。bFGF 梯度显著促进了细胞向构建体中的渗透。植入 10 天后,构建体中形成了高密度的成熟血管(对 CD31 和 α-SMA 均呈阳性)。随着 bFGF 梯度陡度的增加,血管密度增加。这些梯度构建体可能有潜力用于各种应用的血管化组织工程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验