Suppr超能文献

轴突特化中的关键极性调节因子。

Crucial polarity regulators in axon specification.

机构信息

Wolfson Centre for Age-Related Diseases, King's College London, Guy's campus, London SE1 1UL, U.K.

出版信息

Essays Biochem. 2012;53:55-68. doi: 10.1042/bse0530055.

Abstract

Cell polarization is critical for the correct functioning of many cell types, creating functional and morphological asymmetry in response to intrinsic and extrinsic cues. Neurons are a classical example of polarized cells, as they usually extend one long axon and short branched dendrites. The formation of such distinct cellular compartments (also known as neuronal polarization) ensures the proper development and physiology of the nervous system and is controlled by a complex set of signalling pathways able to integrate multiple polarity cues. Because polarization is at the basis of neuronal development, investigating the mechanisms responsible for this process is fundamental not only to understand how the nervous system develops, but also to devise therapeutic strategies for neuroregeneration. The last two decades have seen remarkable progress in understanding the molecular mechanisms responsible for mammalian neuronal polarization, primarily using cultures of rodent hippocampal neurons. More recent efforts have started to explore the role of such mechanisms in vivo. It has become clear that neuronal polarization relies on signalling networks and feedback mechanisms co-ordinating the actin and microtubule cytoskeleton and membrane traffic. The present chapter will highlight the role of key molecules involved in neuronal polarization, such as regulators of the actin/microtubule cytoskeleton and membrane traffic, polarity complexes and small GTPases.

摘要

细胞极化对于许多细胞类型的正常功能至关重要,它会对外界刺激产生功能性和形态学的不对称性。神经元是极化细胞的典型代表,因为它们通常会延伸出一条长轴突和几条短的树突分支。这种独特的细胞区室的形成(也称为神经元极化)确保了神经系统的正常发育和生理功能,并且由一套能够整合多种极性信号的复杂信号通路来控制。由于极化是神经元发育的基础,因此研究负责这一过程的机制不仅对于了解神经系统的发育至关重要,而且对于设计神经再生的治疗策略也具有重要意义。在过去的二十年中,人们在理解负责哺乳动物神经元极化的分子机制方面取得了显著进展,主要是使用培养的啮齿动物海马神经元进行研究。最近的研究工作开始探索这些机制在体内的作用。目前已经清楚的是,神经元极化依赖于信号网络和反馈机制来协调肌动蛋白和微管细胞骨架以及膜运输。本章将重点介绍参与神经元极化的关键分子的作用,如肌动蛋白/微管细胞骨架和膜运输的调节因子、极性复合物和小 GTPases。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验