Neurological Institute, Epilepsy Center, Cleveland Clinic, OH 44195, USA.
J Neural Eng. 2012 Oct;9(5):056008. doi: 10.1088/1741-2560/9/5/056008. Epub 2012 Aug 28.
Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/f(γ) noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders.
分形方法为研究大脑中非平稳生物医学记录中的湍流非线性提供了一种非常有价值的手段。在这里,我们研究了复杂性(即关联维数、最大 Lyapunov 指数、1/f(γ)噪声和近似熵)和复杂背景神经元噪声样活动中的多重分形特性,这些活动是在两个体外模型中记录的:完整的小鼠海马体和病变的人类海马切片。我们的结果表明,在向癫痫样发作状态转变后,动力学复杂性和多重分形信号特征降低。这些发现表明,多重分形复杂性的病理性破坏与信号可变性或异质性的丧失一致,与不健康的癫痫发作状态一致,这种状态远非大脑中湍流但健康的分形动力学的平衡。因此,似乎背景噪声样活动成功地捕捉到了复杂和多重分形信号特征,这些特征至少在一定程度上可用于对健康和癫痫大脑中的脑状态转变进行分类和识别,为患有癫痫和其他相关神经障碍的患者提供了潜在的治疗性神经调节策略的希望。