Laboratory of Retrovirology, Public Research Center for Health, Luxembourg, Luxembourg.
Biochem Pharmacol. 2012 Nov 15;84(10):1366-80. doi: 10.1016/j.bcp.2012.08.008. Epub 2012 Aug 21.
Chemokines and their receptors play fundamental roles in many physiological and pathological processes such as leukocyte trafficking, inflammation, cancer and HIV-1 infection. Chemokine-receptor interactions are particularly intricate and therefore require precise orchestration. The flexible N-terminal domain of human chemokine receptors has regularly been demonstrated to hold a crucial role in the initial recognition and selective binding of the receptor ligands. The length and the amino acid sequences of the N-termini vary considerably among different receptors but they all show a high content of negatively charged residues and are subject to post-translational modifications such as O-sulfation and N- or O-glycosylation. In addition, a conserved cysteine that is most likely engaged in a receptor-stabilizing disulfide bond delimits two functionally distinct parts in the N-terminus, characterized by specific molecular signatures. Structural analyses have shown that the N-terminus of chemokine receptors recognizes a groove on the chemokine surface and that this interaction is stabilized by high-affinity binding to a conserved sulfotyrosine-binding pocket. Altogether, these data provide new insights on the chemokine-receptor molecular interplay and identify the receptor N-terminus-binding site as a new target for the development of therapeutic molecules. This review presents and discusses the diversity and function of human chemokine receptor N-terminal domains and provides a comprehensive annotated inventory of their sequences, laying special emphasis on the presence of post-translational modifications and functional features. Finally, it identifies new molecular signatures and proposes a computational model for the positioning and the conformation of the CXCR4 N-terminus grafted on the first chemokine receptor X-ray structure.
趋化因子及其受体在许多生理和病理过程中发挥着重要作用,如白细胞迁移、炎症、癌症和 HIV-1 感染。趋化因子-受体相互作用特别复杂,因此需要精确的协调。人类趋化因子受体的灵活 N 端结构域经常被证明在受体配体的初始识别和选择性结合中起着关键作用。不同受体的 N 端长度和氨基酸序列差异很大,但它们都显示出高含量的负电荷残基,并受到翻译后修饰,如 O-硫酸化、N-或 O-糖基化。此外,一个保守的半胱氨酸很可能参与稳定二硫键的受体,在 N 端划分两个功能不同的部分,具有特定的分子特征。结构分析表明,趋化因子受体的 N 端识别趋化因子表面上的一个凹槽,这种相互作用通过与保守的磺酸酪氨酸结合口袋的高亲和力结合得到稳定。总之,这些数据为趋化因子-受体分子相互作用提供了新的见解,并确定了受体 N 端结合位点作为开发治疗分子的新靶标。本综述介绍并讨论了人类趋化因子受体 N 端结构域的多样性和功能,并提供了它们序列的全面注释清单,特别强调了翻译后修饰和功能特征的存在。最后,它确定了新的分子特征,并提出了一个计算模型,用于定位和构象 CXCR4 N 端移植到第一个趋化因子受体 X 射线结构。