Suppr超能文献

了解阿塞那平的口腔黏膜吸收及其临床药代动力学结果。

Understanding the oral mucosal absorption and resulting clinical pharmacokinetics of asenapine.

机构信息

Pharmaceutical Development, Worldwide Pharmaceutical Sciences, Pfizer Global Research and Development, Groton, Connecticut 06340, USA.

出版信息

AAPS PharmSciTech. 2012 Dec;13(4):1110-5. doi: 10.1208/s12249-012-9839-7. Epub 2012 Aug 31.

Abstract

Absorption of drugs from the oral cavity into the mucosal tissues is typically a fast event. Dissolved drugs partition into the mucosal membranes and within minutes will reach equilibrium with drug in solution in the oral cavity. However, this does not always equate to rapid drug appearance in the systemic circulation. This has been attributed to slow partitioning out of the mucosal tissues and into the systemic circulation. Based on information from literature, physicochemical properties of asenapine, and clinical data, we conclude that for sublingually administered asenapine, the exposure is primarily a function of rapid partitioning into the mucosal membranes. This is followed by slow partitioning out of the mucosal tissues and into the systemic circulation, leading to a T (max) value of about 1 h. The bioavailability of asenapine at doses below the saturation solubility in the mouth does not change and is controlled primarily by mass transport equilibrium. At doses above the saturation solubility, the bioavailability becomes more dependent not only on the distribution equilibrium but also on contact time in the mouth because additional variables (e.g. dissolution rate of the drug) need to be accounted for. These explanations are consistent with oral cavity absorption models from the literature and can be used to accurately describe the clinical data for asenapine.

摘要

药物从口腔进入黏膜组织的吸收通常是一个快速的过程。溶解的药物分配到黏膜中,几分钟内就会与口腔中药物的溶液达到平衡。然而,这并不总是等同于药物迅速出现在全身循环中。这归因于药物从黏膜组织缓慢分配到全身循环中。根据文献中的信息、阿塞纳平的物理化学性质和临床数据,我们得出结论,对于舌下给予的阿塞纳平,其暴露主要是快速分配到黏膜中的结果。然后,药物从黏膜组织缓慢分配到全身循环中,导致 T(max)值约为 1 小时。在口腔中饱和溶解度以下的剂量下,阿塞纳平的生物利用度不会改变,主要受质量传递平衡控制。在高于饱和溶解度的剂量下,生物利用度不仅取决于分布平衡,还取决于在口腔中的接触时间,因为需要考虑其他变量(例如药物的溶解速率)。这些解释与文献中的口腔吸收模型一致,可用于准确描述阿塞纳平的临床数据。

相似文献

1
Understanding the oral mucosal absorption and resulting clinical pharmacokinetics of asenapine.
AAPS PharmSciTech. 2012 Dec;13(4):1110-5. doi: 10.1208/s12249-012-9839-7. Epub 2012 Aug 31.
2
Effect of absorption site on the pharmacokinetics of sublingual asenapine in healthy male subjects.
Biopharm Drug Dispos. 2010 Jul;31(5-6):351-7. doi: 10.1002/bdd.718.
3
[Analysis of factors governing drug absorption and their improvement].
Yakugaku Zasshi. 2009 Aug;129(8):911-23. doi: 10.1248/yakushi.129.911.
4
The effect of food on the high clearance drug asenapine after sublingual administration to healthy male volunteers.
Eur J Clin Pharmacol. 2015 Jan;71(1):65-74. doi: 10.1007/s00228-013-1587-4. Epub 2015 Jan 1.
5
Valproate reduces the glucuronidation of asenapine without affecting asenapine plasma concentrations.
J Clin Pharmacol. 2012 May;52(5):757-65. doi: 10.1177/0091270011404028. Epub 2011 May 31.
8
Asenapine pharmacokinetics in hepatic and renal impairment.
Clin Pharmacokinet. 2011 Jul;50(7):471-81. doi: 10.2165/11590490-000000000-00000.
10
Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications.
Clin Pharmacokinet. 2002;41(9):661-80. doi: 10.2165/00003088-200241090-00003.

引用本文的文献

1
In Vitro Oral Cavity Permeability Assessment to Enable Simulation of Drug Absorption.
Pharmaceutics. 2025 Jul 17;17(7):924. doi: 10.3390/pharmaceutics17070924.
2
Evaluation of Drug Permeation Enhancement by Using In Vitro and Ex Vivo Models.
Pharmaceuticals (Basel). 2025 Jan 31;18(2):195. doi: 10.3390/ph18020195.
3
In vitro and ex vivo models of the oral mucosa as platforms for the validation of novel drug delivery systems.
J Tissue Eng. 2025 Feb 11;16:20417314241313458. doi: 10.1177/20417314241313458. eCollection 2025 Jan-Dec.
4
5
Therapeutic Impact of Ascorbic Acid on Oral and Periodontal Tissues: A Systematic Literature Review.
Medicina (Kaunas). 2024 Dec 11;60(12):2041. doi: 10.3390/medicina60122041.
6
Eradication of proliferative verrucous leukoplakia with toll-like receptor 7 agonist (topical imiquimod): a case report.
Front Oncol. 2024 Nov 15;14:1473889. doi: 10.3389/fonc.2024.1473889. eCollection 2024.
7
Evaluation of Monolayer and Bilayer Buccal Films Containing Metoclopramide.
Pharmaceutics. 2024 Mar 2;16(3):354. doi: 10.3390/pharmaceutics16030354.
8
The Bioavailability of CHF6563, an Ethanol-Free, Sublingual Neonatal Buprenorphine Formulation: A Bridging Study Conducted in Adults.
J Pediatr Pharmacol Ther. 2024;29(1):49-52. doi: 10.5863/1551-6776-29.1.49. Epub 2024 Feb 7.
9
Reduced Use of Antibiotics and Nasal Decongestants During Treatment with a Mouthwash Containing Delmopinol.
Oral Health Prev Dent. 2023 Nov 2;21:347-356. doi: 10.3290/j.ohpd.b4586769.

本文引用的文献

1
Asenapine: a novel psychopharmacologic agent with a unique human receptor signature.
J Psychopharmacol. 2009 Jan;23(1):65-73. doi: 10.1177/0269881107082944. Epub 2008 Feb 28.
3
Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs.
Int J Pharm. 2003 Sep 16;263(1-2):113-22. doi: 10.1016/s0378-5173(03)00372-7.
4
Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications.
Clin Pharmacokinet. 2002;41(9):661-80. doi: 10.2165/00003088-200241090-00003.
5
Pharmacokinetics of verapamil and its metabolite norverapamil from a buccal drug formulation.
Int J Pharm. 2002 May 15;238(1-2):181-9. doi: 10.1016/s0378-5173(02)00069-8.
6
Kinetics of buccal absorption of propafenone single oral loading dose in healthy humans.
Gen Pharmacol. 1998 Oct;31(4):589-91. doi: 10.1016/s0306-3623(98)00045-7.
7
Clinical pharmacokinetics of vasodilators. Part II.
Clin Pharmacokinet. 1998 Jul;35(1):9-36. doi: 10.2165/00003088-199835010-00002.
9
A pharmacokinetic study of sublingual aerosolized morphine in healthy volunteers.
J Pharm Pharmacol. 1996 Dec;48(12):1256-9. doi: 10.1111/j.2042-7158.1996.tb03932.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验