Suppr超能文献

喙部的结构组织在爪哇和达尔文雀中。

Structural tissue organization in the beak of Java and Darwin's finches.

机构信息

Laboratory of Biomedical Physics, University of Antwerp, Antwerpen, Belgium.

出版信息

J Anat. 2012 Nov;221(5):383-93. doi: 10.1111/j.1469-7580.2012.01561.x. Epub 2012 Sep 2.

Abstract

Birds are well known for occupying diverse feeding niches, and for having evolved diverse beak morphologies associated with dietary specialization. Birds that feed on hard seeds typically possess beaks that are both deep and wide, presumably because of selection for fracture avoidance, as suggested by prior studies. It follows then that birds that eat seeds of different size and hardness should vary in one or more aspects of beak morphology, including the histological organization of the rhamphotheca, the cellular interface that binds the rhamphotheca to the bone, and the organization of trabeculae in the beak. To explore this expectation we here investigate tissue organization in the rhamphotheca of the Java finch, a large granivorous bird, and describe interspecific differences in the trabecular organization of the beak across 11 species of Darwin's finches. We identify specializations in multiple layers of the horny beak, with the dermis anchored to the bone by Sharpey's fibers in those regions that are subjected to high stresses during biting. Moreover, the rhamphotheca is characterized by a tight dermo-epidermal junction through interdigitations of these two tissues. Herbst corpuscles are observed in high density in the dermis of the lateral aspect of the beak as observed in other birds. Finally, the trabecular organization of the beak in Darwin's finches appears most variable in regions involved most in food manipulation, with the density of trabeculae in the beak generally mirroring loading regimes imposed by different feeding habits and beak use in this clade.

摘要

鸟类以占据多样化的取食生态位而闻名,并且它们的喙形态也与食性特化进化相关。以坚硬种子为食的鸟类通常具有深而宽的喙,这可能是由于先前的研究表明,它们为了避免喙部断裂而受到选择。因此,吃大小和硬度不同种子的鸟类在喙形态的一个或多个方面应该有所不同,包括角质鞘的组织学结构、将角质鞘与骨骼结合的细胞界面以及喙中小梁的组织。为了探索这种预期,我们在这里研究了 Java 雀的角质鞘的组织学结构,Java 雀是一种大型的食谷鸟,并描述了 11 种达尔文雀的喙的小梁组织在种间的差异。我们确定了角质喙的多个层的特化,在这些区域,真皮通过Sharpey 纤维锚固在骨骼上,这些区域在咬食时会受到高应力的作用。此外,角质鞘的特点是通过这两种组织的相互交错形成紧密的真皮-表皮连接。如在其他鸟类中观察到的那样,Herbst 小体在喙的侧面真皮中高密度存在。最后,达尔文雀的喙的小梁组织在最常用于食物操作的区域表现出最大的可变性,喙中小梁的密度通常反映了不同取食习性和喙在这个分支中的使用所施加的载荷模式。

相似文献

1
Structural tissue organization in the beak of Java and Darwin's finches.
J Anat. 2012 Nov;221(5):383-93. doi: 10.1111/j.1469-7580.2012.01561.x. Epub 2012 Sep 2.
2
Mechanical stress, fracture risk and beak evolution in Darwin's ground finches (Geospiza).
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 12;365(1543):1093-8. doi: 10.1098/rstb.2009.0280.
3
Is Beak Morphology in Darwin's Finches Tuned to Loading Demands?
PLoS One. 2015 Jun 12;10(6):e0129479. doi: 10.1371/journal.pone.0129479. eCollection 2015.
4
The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
Nature. 2006 Aug 3;442(7102):563-7. doi: 10.1038/nature04843.
5
The head of the finch: the anatomy of the feeding system in two species of finches (Geospiza fortis and Padda oryzivora).
J Anat. 2011 Dec;219(6):676-95. doi: 10.1111/j.1469-7580.2011.01437.x. Epub 2011 Oct 17.
6
Geometry and dynamics link form, function, and evolution of finch beaks.
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2105957118.
7
Darwin's Galapagos finches in modern biology.
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 12;365(1543):1001-7. doi: 10.1098/rstb.2009.0321.
8
Evolution of Darwin's finches and their beaks revealed by genome sequencing.
Nature. 2015 Feb 19;518(7539):371-5. doi: 10.1038/nature14181. Epub 2015 Feb 11.
9
Two developmental modules establish 3D beak-shape variation in Darwin's finches.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4057-62. doi: 10.1073/pnas.1011480108. Epub 2011 Feb 22.

引用本文的文献

1
Bill shape imposes biomechanical tradeoffs in cavity-excavating birds.
Proc Biol Sci. 2023 Mar 29;290(1995):20222395. doi: 10.1098/rspb.2022.2395.
2
Tactile sensation in birds: Physiological insights from avian mechanoreceptors.
Curr Opin Neurobiol. 2022 Jun;74:102548. doi: 10.1016/j.conb.2022.102548. Epub 2022 Apr 27.
3
Cretaceous origins of the vibrotactile bill-tip organ in birds.
Proc Biol Sci. 2020 Dec 9;287(1940):20202322. doi: 10.1098/rspb.2020.2322. Epub 2020 Dec 2.
4
The sandwich structure of keratinous layers controls the form and growth orientation of chicken rhinotheca.
J Anat. 2019 Aug;235(2):299-312. doi: 10.1111/joa.12998. Epub 2019 Apr 17.
5
Common occurrence of Sharpey's fibres in amphibian phalanges.
Zoomorphology. 2018;137(2):329-336. doi: 10.1007/s00435-018-0400-4. Epub 2018 Feb 15.
6
7
Validation experiments on finite element models of an ostrich (Struthio camelus) cranium.
PeerJ. 2015 Oct 13;3:e1294. doi: 10.7717/peerj.1294. eCollection 2015.
8
Is Beak Morphology in Darwin's Finches Tuned to Loading Demands?
PLoS One. 2015 Jun 12;10(6):e0129479. doi: 10.1371/journal.pone.0129479. eCollection 2015.
9
Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak.
J R Soc Interface. 2014 May 8;11(96):20140274. doi: 10.1098/rsif.2014.0274. Print 2014 Jul 6.
10
Limb, tooth, beak: three modes of development and evolutionary innovation of form.
J Biosci. 2014 Apr;39(2):211-23. doi: 10.1007/s12038-013-9355-2.

本文引用的文献

1
Multi-layered bird beaks: a finite-element approach towards the role of keratin in stress dissipation.
J R Soc Interface. 2012 Aug 7;9(73):1787-96. doi: 10.1098/rsif.2011.0910. Epub 2012 Feb 15.
2
Determination and validation of the elastic moduli of small and complex biological samples: bone and keratin in bird beaks.
J R Soc Interface. 2012 Jun 7;9(71):1381-8. doi: 10.1098/rsif.2011.0667. Epub 2011 Nov 16.
4
The head of the finch: the anatomy of the feeding system in two species of finches (Geospiza fortis and Padda oryzivora).
J Anat. 2011 Dec;219(6):676-95. doi: 10.1111/j.1469-7580.2011.01437.x. Epub 2011 Oct 17.
5
Modulation of intra-oral processing in mammals and lepidosaurs.
Integr Comp Biol. 2007 Jul;47(1):118-36. doi: 10.1093/icb/icm044. Epub 2007 May 27.
6
Electromyography and the evolution of motor control: limitations and insights.
Integr Comp Biol. 2008 Aug;48(2):261-71. doi: 10.1093/icb/icn025. Epub 2008 Apr 28.
7
Strain in the ostrich mandible during simulated pecking and validation of specimen-specific finite element models.
J Anat. 2011 Jan;218(1):47-58. doi: 10.1111/j.1469-7580.2010.01296.x. Epub 2010 Sep 16.
8
Mechanical stress, fracture risk and beak evolution in Darwin's ground finches (Geospiza).
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 12;365(1543):1093-8. doi: 10.1098/rstb.2009.0280.
9
Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia.
J Anat. 2009 Apr;214(4):516-59. doi: 10.1111/j.1469-7580.2009.01066.x.
10
Seed husking time and maximal bite force in finches.
J Exp Biol. 2006 Sep;209(Pt 17):3329-35. doi: 10.1242/jeb.02379.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验