Di Ieva Antonio
Center for Anatomy and Cell Biology, Department of Systematic Anatomy, Medical University of Vienna, Austria.
Clin Neuropathol. 2012 Sep-Oct;31(5):342-51. doi: 10.5414/np300485.
Brain tumors are characterized by a microvascular network which differs from normal brain vascularity. Different tumors show individual angiogenic patterns. Microvascular heterogeneity can also be observed within a neoplastic histotype. It has been shown that quantification of neoplastic microvascular patterns could be used in combination with the histological grade for tumor characterization and to refine clinical prognoses, even if no objective parameters have yet been validated. To overcome the limits of the Euclidean approach, we employ fractal geometry to analyze the geometric complexity underlying the microangioarchitectural networks in brain tumors. We have developed a computer-aided fractal-based analysis for the quantification of the microvascular patterns in histological specimens and ultra-high-field (7-Tesla) magnetic resonance images. We demonstrate that the fractal parameters are valid estimators of microvascular geometrical complexity. Furthermore, our analysis allows us to demonstrate the high geometrical variability underlying the angioarchitecture of glioblastoma multiforme and to differentiate low-grade from malignant tumors in histological specimens and radiological images. Based on the results of this study, we speculate the existence of a gradient in the geometrical complexity of microvascular networks from those in the normal brain to those in malignant brain tumors. Here, we summarize a new methodology for the application of fractal analysis to the study of the microangioarchitecture of brain tumors; we further suggest this approach as a tool for quantifying and categorizing different neoplastic microvascular patterns and as a potential morphometric biomarker for use in clinical practice.
脑肿瘤的特征是具有不同于正常脑血管的微血管网络。不同的肿瘤呈现出各自独特的血管生成模式。在肿瘤组织类型内部也能观察到微血管的异质性。研究表明,即使尚未有客观参数得到验证,但肿瘤微血管模式的量化可与组织学分级相结合用于肿瘤特征描述及优化临床预后。为克服欧几里得方法的局限性,我们采用分形几何来分析脑肿瘤微血管构筑网络背后的几何复杂性。我们开发了一种基于分形的计算机辅助分析方法,用于量化组织学标本和超高场(7特斯拉)磁共振图像中的微血管模式。我们证明分形参数是微血管几何复杂性的有效估计指标。此外,我们的分析使我们能够证明多形性胶质母细胞瘤血管构筑存在高度的几何变异性,并在组织学标本和放射图像中区分低级别肿瘤与恶性肿瘤。基于本研究结果,我们推测从正常脑内的微血管网络到恶性脑肿瘤内的微血管网络,其几何复杂性存在一个梯度变化。在此,我们总结了一种将分形分析应用于脑肿瘤微血管构筑研究的新方法;我们进一步建议将该方法作为量化和分类不同肿瘤微血管模式的工具,以及作为临床实践中潜在的形态计量生物标志物。