Fachbereich Chemie, Philipps-Universität Marburg, Germany.
Chemistry. 2012 Oct 1;18(40):12733-48. doi: 10.1002/chem.201200741. Epub 2012 Sep 3.
Quantum chemical calculations at the BP86/TZVPP//BP86/SVP level are performed for the tetrylone complexes [W(CO)(5) -E(PPh(3))(2)] (W-1 E) and the tetrylene complexes [W(CO)(5)-NHE] (W-2 E) with E=C-Pb. The bonding is analyzed using charge and energy decomposition methods. The carbone ligand C(PPh(3) ) is bonded head-on to the metal in W-1 C, but the tetrylone ligands E(PPh(3))(2) are bonded side-on in the heavier homologues W-1 Si to W-1 Pb. The W-E bond dissociation energies (BDEs) increase from the lighter to the heavier homologues (W-1 C: D(e) =25.1 kcal mol(-1); W-1 Pb: D(e) =44.6 kcal mol(-1)). The W(CO)(5) ←C(PPh(3))(2) donation in W-1 C comes from the σ lone-pair orbital of C(PPh(3))(2), whereas the W(CO)(5) ←E(PPh(3))(2) donation in the side-on bonded complexes with E=Si-Pb arises from the π lone-pair orbital of E(PPh(3))(2) (the HOMO of the free ligand). The π-HOMO energy level rises continuously for the heavier homologues, and the hybridization has greater p character, making the heavier tetrylones stronger donors than the lighter systems, because tetrylones have two lone-pair orbitals available for donation. Energy decomposition analysis (EDA) in conjunction with natural orbital for chemical valence (NOCV) suggests that the W-E BDE trend in W-1 E comes from the increase in W(CO)(5) ←E(PPh(3))(2) donation and from stronger electrostatic attraction, and that the E(PPh(3))(2) ligands are strong σ-donors and weak π-donors. The NHE ligands in the W-2 E complexes are bonded end-on for E=C, Si, and Ge, but side-on for E=Sn and Pb. The W-E BDE trend is opposite to that of the W-1 E complexes. The NHE ligands are strong σ-donors and weak π-acceptors. The observed trend arises because the hybridization of the donor orbital at atom E in W-2 E has much greater s character than that in W-1 E, and even increases for heavier atoms, because the tetrylenes have only one lone-pair orbital available for donation. In addition, the W-E bonds of the heavier systems W-2 E are strongly polarized toward atom E, so the electrostatic attraction with the tungsten atom is weak. The BDEs calculated for the W-E bonds in W-1 E, W-2 E and the less bulky tetrylone complexes [W(CO)(5) -E(PH(3))(2)] (W-3 E) show that the effect of bulky ligands may obscure the intrinsic W-E bond strength.
在 BP86/TZVPP//BP86/SVP 水平上进行了量子化学计算,研究了[W(CO)(5)-E(PPh(3))(2)](W-1 E)和[W(CO)(5)-NHE](W-2 E)与 E=C-Pb 的特里隆配合物。使用电荷和能量分解方法分析了键合。在 W-1 C 中,碳配体 C(PPh(3)) 直接与金属键合,但在较重的同系物 W-1 Si 至 W-1 Pb 中,特里隆配体 E(PPh(3))(2) 则以侧接方式键合。W-E 键离解能(BDE)从较轻的同系物增加到较重的同系物(W-1 C:D(e)=25.1 kcal mol(-1);W-1 Pb:D(e)=44.6 kcal mol(-1))。W-1 C 中的 W(CO)(5)←C(PPh(3))(2) 供体来自 C(PPh(3))(2) 的σ 孤对轨道,而与 E=Si-Pb 侧接键合的配合物中的 W(CO)(5)←E(PPh(3))(2) 供体来自 E(PPh(3))(2)的π 孤对轨道(游离配体的 HOMO)。较重同系物的π-HOMO 能级连续升高,杂化具有更大的 p 特征,使较重的特里隆比较轻的系统具有更强的供体,因为特里隆有两个孤对轨道可供供体。与自然价键轨道(NOCV)相结合的能量分解分析(EDA)表明,W-1 E 中 W-E BDE 趋势来自 W(CO)(5)←E(PPh(3))(2) 供体的增加和更强的静电引力,并且 E(PPh(3))(2) 配体是强σ-供体和弱π-受体。W-2 E 配合物中的 NHE 配体对于 E=C、Si 和 Ge 是端接键合的,但对于 E=Sn 和 Pb 是侧接键合的。W-E BDE 趋势与 W-1 E 配合物相反。NHE 配体是强σ-供体和弱π-受体。观察到的趋势是因为 W-2 E 中供体轨道在原子 E 处的杂化具有比 W-1 E 更大的 s 特征,甚至对于较重的原子也会增加,因为特里隆只有一个孤对轨道可供供体。此外,较重系统 W-2 E 的 W-E 键强烈极化到原子 E,因此与钨原子的静电引力较弱。对 W-1 E、W-2 E 和体积较小的特里隆配合物[W(CO)(5)-E(PH(3))(2)](W-3 E)中的 W-E 键的计算表明,大体积配体的影响可能会掩盖内在的 W-E 键强度。