Suppr超能文献

克里米亚-刚果出血热病毒核蛋白的结构:超螺旋同型寡聚物和半胱天冬酶-3 切割的作用。

Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage.

机构信息

Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China.

出版信息

J Virol. 2012 Nov;86(22):12294-303. doi: 10.1128/JVI.01627-12. Epub 2012 Sep 5.

Abstract

Crimean-Congo hemorrhagic fever, a severe hemorrhagic disease found throughout Africa, Europe, and Asia, is caused by the tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Nairovirus genus of the Bunyaviridae family. Its genome of three single-stranded RNA segments is encapsidated by the nucleocapsid protein (CCHFV N) to form the ribonucleoprotein complex. This ribonucleoprotein complex is required during replication and transcription of the viral genomic RNA. Here, we present the crystal structures of the CCHFV N in two distinct forms, an oligomeric form comprised of double antiparallel superhelices and a monomeric form. The head-to-tail interaction of the stalk region of one CCHFV N subunit with the base of the globular body of the adjacent subunit stabilizes the helical organization of the oligomeric form of CCHFV N. It also masks the conserved caspase-3 cleavage site present at the tip of the stalk region from host cell caspase-3 interaction and cleavage. By incubation with primer-length ssRNAs, we also obtained the crystal structure of CCHFV N in its monomeric form, which is similar to a recently published structure. The conformational change of CCHFV N upon deoligomerization results in the exposure of the caspase-3 cleavage site and subjects CCHFV N to caspase-3 cleavage. Mutations of this cleavage site inhibit cleavage by caspase-3 and result in enhanced viral polymerase activity. Thus, cleavage of CCHFV N by host cell caspase-3 appears to be crucial for controlling viral RNA synthesis and represents an important host defense mechanism against CCHFV infection.

摘要

克里米亚-刚果出血热是一种严重的出血性疾病,分布于非洲、欧洲和亚洲,由蜱传播的克里米亚-刚果出血热病毒(CCHFV)引起。CCHFV 是一种负义单链 RNA(ssRNA)病毒,属于布尼亚病毒科内罗病毒属。其三个单链 RNA 片段的基因组被核衣壳蛋白(CCHFV N)包裹形成核糖核蛋白复合物。该核糖核蛋白复合物是病毒基因组 RNA 复制和转录所必需的。在这里,我们展示了两种不同形式的 CCHFV N 的晶体结构,一种是由双链反平行超螺旋组成的寡聚体形式,另一种是单体形式。一个 CCHFV N 亚基的茎区头部到尾部与相邻亚基的球形主体基部的相互作用稳定了 CCHFV N 寡聚体形式的螺旋结构。它还掩盖了茎区尖端存在的保守半胱天冬酶-3 切割位点,使其免受宿主细胞半胱天冬酶-3 的相互作用和切割。通过与引物长度的 ssRNA 孵育,我们还获得了 CCHFV N 的单体形式的晶体结构,该结构与最近发表的结构相似。CCHFV N 的解聚导致构象变化,暴露半胱天冬酶-3 切割位点,并使 CCHFV N 受到半胱天冬酶-3 的切割。该切割位点的突变抑制半胱天冬酶-3 的切割,并导致病毒聚合酶活性增强。因此,宿主细胞半胱天冬酶-3 对 CCHFV N 的切割似乎对于控制病毒 RNA 合成至关重要,是宿主抵抗 CCHFV 感染的重要防御机制。

相似文献

2
Crimean-Congo hemorrhagic fever virus nucleocapsid protein harbors distinct RNA-binding sites in the stalk and head domains.
J Biol Chem. 2019 Mar 29;294(13):5023-5037. doi: 10.1074/jbc.RA118.004976. Epub 2019 Feb 5.
3
Molecular basis for the formation of ribonucleoprotein complex of Crimean-Congo hemorrhagic fever virus.
J Struct Biol. 2016 Dec;196(3):455-465. doi: 10.1016/j.jsb.2016.09.013. Epub 2016 Sep 22.
5
Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein.
J Virol. 2012 Oct;86(20):10914-23. doi: 10.1128/JVI.01555-12. Epub 2012 Aug 8.
6
Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5046-51. doi: 10.1073/pnas.1200808109. Epub 2012 Mar 14.
7
Crimean-Congo hemorrhagic fever virus nucleocapsid protein has dual RNA binding modes.
PLoS One. 2017 Sep 18;12(9):e0184935. doi: 10.1371/journal.pone.0184935. eCollection 2017.
8
Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin.
PLoS Pathog. 2015 May 1;11(5):e1004879. doi: 10.1371/journal.ppat.1004879. eCollection 2015 May.

引用本文的文献

1
Molecular Evolution and Phylogeography of the Crimean-Congo Hemorrhagic Fever Virus.
Viruses. 2025 Jul 28;17(8):1054. doi: 10.3390/v17081054.
3
Crimean-Congo Hemorrhagic Fever Virus Infections in Slaughtered Camels and Abattoir Workers in the United Arab Emirates.
Transbound Emerg Dis. 2025 May 8;2025:3409106. doi: 10.1155/tbed/3409106. eCollection 2025.
6
Identification of critical residues for RNA binding of nairovirus nucleoprotein.
J Virol. 2024 Nov 19;98(11):e0144624. doi: 10.1128/jvi.01446-24. Epub 2024 Oct 31.
8
The Phlebovirus Ribonucleoprotein: An Overview.
Methods Mol Biol. 2024;2824:259-280. doi: 10.1007/978-1-0716-3926-9_17.
9
Crimean Congo Hemorrhagic Fever Virus for Clinicians-Virology, Pathogenesis, and Pathology.
Emerg Infect Dis. 2024 May;30(5):847-853. doi: 10.3201/eid3005.231646.
10
Nairovirus polymerase mutations associated with the establishment of persistent infection in human cells.
J Virol. 2024 Mar 19;98(3):e0169823. doi: 10.1128/jvi.01698-23. Epub 2024 Feb 15.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Expression, purification and crystallization of the Crimean-Congo haemorrhagic fever virus nucleocapsid protein.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 May 1;68(Pt 5):569-73. doi: 10.1107/S1744309112009736. Epub 2012 Apr 21.
3
Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5046-51. doi: 10.1073/pnas.1200808109. Epub 2012 Mar 14.
4
Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19365-70. doi: 10.1073/pnas.1108515108. Epub 2011 Nov 14.
5
Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy.
J Biol Chem. 2011 Nov 4;286(44):38748-38756. doi: 10.1074/jbc.M111.278838. Epub 2011 Sep 14.
6
Nucleoproteins and nucleocapsids of negative-strand RNA viruses.
Curr Opin Microbiol. 2011 Aug;14(4):504-10. doi: 10.1016/j.mib.2011.07.011. Epub 2011 Aug 6.
7
8
Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression.
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2396-401. doi: 10.1073/pnas.1016404108. Epub 2011 Jan 24.
10
Cap binding and immune evasion revealed by Lassa nucleoprotein structure.
Nature. 2010 Dec 9;468(7325):779-83. doi: 10.1038/nature09605. Epub 2010 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验