Leung Kam
National for Biotechnology Information, NLM, NIH, Bethesda, MD
Magnetic resonance imaging (MRI) maps information about tissues spatially and functionally. Protons (hydrogen nuclei) are widely used in imaging because of their abundance in water molecules. Water comprises ~80% of most soft tissue. The contrast of proton MRI depends primarily on the density of the nucleus (proton spins), the relaxation times of the nuclear magnetization (T1, longitudinal; T2, transverse), the magnetic environment of the tissues, and the blood flow to the tissues. However, insufficient contrast between normal and diseased tissues requires the development of contrast agents. Most contrast agents affect the T1 and T2 relaxation times of the surrounding nuclei, mainly the protons of water. T2* is the spin–spin relaxation time composed of variations from molecular interactions and intrinsic magnetic heterogeneities of tissues in the magnetic field (1). Cross-linked iron oxide nanoparticles and other iron oxide formulations affect T2 primarily and lead to decreased signals. On the other hand, paramagnetic T1 agents, such as gadolinium (Gd) and manganese (Mn), accelerate T1 relaxation and lead to brighter contrast images. Apolipoprotein E (apoE) is essential for the normal catabolism of triglyceride-rich lipoprotein chylomicrons (lipoprotein particles) (2). Oxidation of low-density lipoprotein (LDL) generates a number of highly reactive short chain-length aldehydic fragments of oxidized fatty acids capable of conjugating with lysine residues of apoliprotein B and other proteins. Oxidized LDL (OxLDL) is present in atherosclerotic lesions and is essential for the formation of foam cells in atherosclerotic plaques. During atherogenic conditions, deposition of lipids and extracellular matrix proteins on the endothelial cell surfaces of the aorta leads to the development of atherosclerotic plaques (3), which may erode and rupture. MDA2 is a murine monoclonal antibody to malondialdehyde-lysine epitopes of OxLDL and other oxidatively modified proteins, but not to normal LDL (4). The antibody-OxLDL complexes are taken up by macrophages and foam cells in the atherosclerotic plaques. Briley-Saebo et al. (5) demonstrated the accumulation of MDA2 micelles containing Gd (MDA2-Gd micelles) in macrophages of atherosclerotic lesions in apoE-deficient (apoE) mice using MRI. However, Gd may lead to renal toxicity in patients. In another study, Briley-Saebo et al. (6) demonstrated that MDA2-Mn micelles exhibited sensitive and robust detection of atherosclerotic lesions in apoE mice using MRI.
磁共振成像(MRI)能在空间和功能上绘制组织信息。质子(氢原子核)因其在水分子中含量丰富而被广泛用于成像。水约占大多数软组织的80%。质子MRI的对比度主要取决于原子核(质子自旋)的密度、核磁化的弛豫时间(T1,纵向;T2,横向)、组织的磁环境以及组织的血流情况。然而,正常组织与病变组织之间对比度不足,这就需要研发造影剂。大多数造影剂会影响周围原子核的T1和T2弛豫时间,主要是水分子的质子。T2*是由分子相互作用以及磁场中组织的固有磁不均匀性变化所构成的自旋 - 自旋弛豫时间(1)。交联氧化铁纳米颗粒和其他氧化铁制剂主要影响T2并导致信号减弱。另一方面,顺磁性T1造影剂,如钆(Gd)和锰(Mn),会加速T1弛豫并产生对比度更高的明亮图像。载脂蛋白E(apoE)对于富含甘油三酯的脂蛋白乳糜微粒(脂蛋白颗粒)的正常分解代谢至关重要(2)。低密度脂蛋白(LDL)的氧化会产生许多高反应性的短链氧化脂肪酸醛类片段,这些片段能够与载脂蛋白B和其他蛋白质的赖氨酸残基结合。氧化型低密度脂蛋白(OxLDL)存在于动脉粥样硬化病变中,对于动脉粥样硬化斑块中泡沫细胞的形成至关重要。在致动脉粥样硬化的情况下,脂质和细胞外基质蛋白在主动脉内皮细胞表面沉积会导致动脉粥样硬化斑块的形成(3),这些斑块可能会侵蚀和破裂。MDA2是一种针对OxLDL和其他氧化修饰蛋白的丙二醛 - 赖氨酸表位的鼠单克隆抗体,但对正常LDL无反应(4)。抗体 - OxLDL复合物会被动脉粥样硬化斑块中的巨噬细胞和泡沫细胞摄取。Briley - Saebo等人(5)使用MRI证明了在载脂蛋白E缺陷(apoE)小鼠的动脉粥样硬化病变巨噬细胞中,含有钆的MDA2胶束(MDA2 - Gd胶束)会聚集。然而,钆可能会对患者造成肾毒性。在另一项研究中,Briley - Saebo等人(6)使用MRI证明了MDA2 - Mn胶束对apoE小鼠的动脉粥样硬化病变具有灵敏且可靠的检测能力。