Chemical Engineering Department, Amirkabir University of Technology, 424 Hafez Ave., Tehran, Iran.
Water Environ Res. 2012 Aug;84(8):626-34. doi: 10.2175/106143012x13373550427075.
This study examined the biodegradation of phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor (ICB), operated in a repeated batch recycling mode. The steady biodegradation rate of 23.7 mg/g/h, over a wide range of the initial phenol concentrations up to 1400 mg/L in the ICB, indicated an increased tolerance limit of the Kissiris-immobilized cells towards phenol. Both Haldane and Luong substrate inhibition models were used to describe biodegradation kinetic of free cells system. The Haldane equation gave the following values for the biokinetic parameters: micro(max) = 0.36 h(-1), Ks = 40.48 mg/L, and Ki = 181.9 mg/L. However, according to the Luong model, these parameters were micromax) = 0.23 h(-1), Ks = 24.8 mg/L, Sm = 1018 mg/L, and n = 1.3. By following appropriate operational conditions and use of the ICB, it was found to be possible to extend the efficiency of the highly porous structure of the siliceous mineral Kissiris in cell immobilization. This holds significant promise for pollutant biodegradation issues.
本研究考察了在 Kissiris 固定化细胞生物反应器(ICB)中,Ralstonia eutropha 对苯酚的生物降解情况,该生物反应器以重复批处理回收模式运行。在 ICB 中,初始苯酚浓度范围很宽,高达 1400mg/L 时,稳定的生物降解率达到 23.7mg/g/h,表明 Kissiris 固定化细胞对苯酚的耐受极限有所提高。本研究使用了 Haldane 和 Luong 底物抑制模型来描述游离细胞系统的生物降解动力学。Haldane 方程给出了以下生物动力学参数值:μ(max) = 0.36 h(-1),Ks = 40.48mg/L,Ki = 181.9mg/L。然而,根据 Luong 模型,这些参数为μ(max) = 0.23 h(-1),Ks = 24.8mg/L,Sm = 1018mg/L,n = 1.3。通过采用适当的操作条件和 ICB 的使用,可以发现有可能扩展硅质矿物 Kissiris 的高度多孔结构在细胞固定化中的效率。这对于污染物生物降解问题具有重要意义。