Suppr超能文献

基于 R 变换和广义判别分析特征的隐条件随机场在老年护理中异常活动识别和警报生成系统模型。

A model for abnormal activity recognition and alert generation system for elderly care by hidden conditional random fields using R-transform and generalized discriminant analysis features.

机构信息

Department of Electronics and Radio Engineering, Kyung Hee University, Yongin, South Korea.

出版信息

Telemed J E Health. 2012 Oct;18(8):641-7. doi: 10.1089/tmj.2011.0268. Epub 2012 Sep 6.

Abstract

BACKGROUND

The growing population of elderly people living alone increases the need for automatic healthcare monitoring systems for elderly care. Automatic vision sensor-based systems are increasingly used for human activity recognition (HAR) in recent years. This study presents an improved model, tested using actors, of a sensor-based HAR system to recognize daily life activities of elderly people at home and generate an alert in case of abnormal HAR.

SUBJECTS AND METHODS

Datasets consisting of six abnormal activities (falling backward, falling forward, falling rightward, falling leftward, chest pain, and fainting) and four normal activities (walking, rushing, sitting down, and standing up) are generated from different view angles (90°, -90°, 45°, -45°). Feature extraction and dimensions reduction are performed by R-transform followed by generalized discriminant analysis (GDA) methods. R-transform extracts symmetric, scale, and translation-invariant features from the sequences of activities. GDA increases the discrimination between different classes of highly similar activities. Silhouette sequences are quantified by the Linde-Buzo-Gray algorithm and recognized by hidden conditional random fields.

RESULTS

Experimental results provide an average recognition rate of 94.2% for abnormal activities and 92.7% for normal activities.

CONCLUSIONS

The recognition rate for the highly similar activities from different view angles shows the flexibility and efficacy of the proposed abnormal HAR and alert generation system for elderly care.

摘要

背景

独居老人人口的增长增加了老年人护理中自动医疗保健监测系统的需求。近年来,基于自动视觉传感器的系统越来越多地用于人类活动识别(HAR)。本研究提出了一种经过演员测试的基于传感器的 HAR 系统的改进模型,用于识别老年人在家中的日常生活活动,并在出现异常 HAR 时生成警报。

受试者和方法

从不同视角(90°、-90°、45°、-45°)生成包含六种异常活动(向后摔倒、向前摔倒、向右摔倒、向左摔倒、胸痛和昏厥)和四种正常活动(行走、奔跑、坐下和站立)的数据集。特征提取和维度减少通过 R 变换和广义判别分析(GDA)方法完成。R 变换从活动序列中提取对称、比例和平移不变特征。GDA 增加了高度相似活动之间的区分度。通过 Linde-Buzo-Gray 算法对轮廓序列进行量化,并通过隐藏条件随机场进行识别。

结果

实验结果为异常活动提供了 94.2%的平均识别率,为正常活动提供了 92.7%的平均识别率。

结论

来自不同视角的高度相似活动的识别率表明,所提出的用于老年人护理的异常 HAR 和警报生成系统具有灵活性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验