BIOS, Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
Biomed Microdevices. 2013 Feb;15(1):145-50. doi: 10.1007/s10544-012-9699-7.
The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely understood and therefore a realistic model of the BBB is essential. We present here the smallest model of the BBB yet, using a microfluidic chip, and the immortalized human brain endothelial cell line hCMEC/D3. Barrier function is modulated both mechanically, by exposure to fluid shear stress, and biochemically, by stimulation with tumor necrosis factor alpha (TNF-α), in one single device. The device has integrated electrodes to analyze barrier tightness by measuring the transendothelial electrical resistance (TEER). We demonstrate that hCMEC/D3 cells could be cultured in the microfluidic device up to 7 days, and that these cultures showed comparable TEER values with the well-established Transwell assay, with an average (± SEM) of 36.9 Ω.cm(2) (± 0.9 Ω.cm(2)) and 28.2 Ω.cm(2) (± 1.3 Ω.cm(2)) respectively. Moreover, hCMEC/D3 cells on chip expressed the tight junction protein Zonula Occludens-1 (ZO-1) at day 4. Furthermore, shear stress positively influenced barrier tightness and increased TEER values with a factor 3, up to 120 Ω.cm(2). Subsequent addition of TNF-α decreased the TEER with a factor of 10, down to 12 Ω.cm(2). This realistic microfluidic platform of the BBB is very well suited to study barrier function in detail and evaluate drug passage to finally gain more insight into the treatment of neurodegenerative diseases.
血脑屏障(BBB)是人体的独特特征,可保持大脑内环境稳定并防止有害物质进入大脑。然而,在各种神经退行性疾病中,BBB 的功能受到干扰。BBB 破裂的机制尚不完全清楚,因此,建立一个真实的 BBB 模型至关重要。我们在这里使用微流控芯片和永生化人脑内皮细胞系 hCMEC/D3 展示了迄今为止最小的 BBB 模型。该模型可通过单一设备在机械上(通过暴露于流体切应力)和生物化学上(通过刺激肿瘤坏死因子-α(TNF-α))调节屏障功能。该设备集成了电极,通过测量跨内皮电阻(TEER)来分析屏障的紧密性。我们证明 hCMEC/D3 细胞可在微流控设备中培养长达 7 天,并且这些培养物的 TEER 值与经过验证的 Transwell 测定法相当,平均(± SEM)值分别为 36.9 Ω.cm(2)(± 0.9 Ω.cm(2))和 28.2 Ω.cm(2)(± 1.3 Ω.cm(2))。此外,在第 4 天,芯片上的 hCMEC/D3 细胞表达了紧密连接蛋白 Zonula Occludens-1(ZO-1)。此外,切应力可积极影响屏障的紧密性,使 TEER 值增加 3 倍,达到 120 Ω.cm(2)。随后添加 TNF-α可使 TEER 值降低 10 倍,降至 12 Ω.cm(2)。这种真实的 BBB 微流控平台非常适合详细研究屏障功能,并评估药物的通透性,最终深入了解神经退行性疾病的治疗方法。