Suppr超能文献

聚肌胞苷酸增强对革兰氏阳性菌的二次肺部感染易感性。

Poly I:C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria.

机构信息

Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.

出版信息

PLoS One. 2012;7(9):e41879. doi: 10.1371/journal.pone.0041879. Epub 2012 Sep 4.

Abstract

Secondary bacterial pneumonias are a frequent complication of influenza and other respiratory viral infections, but the mechanisms underlying viral-induced susceptibility to bacterial infections are poorly understood. In particular, it is unclear whether the host's response against the viral infection, independent of the injury caused by the virus, results in impairment of antibacterial host defense. Here, we sought to determine whether the induction of an "antiviral" immune state using various viral recognition receptor ligands was sufficient to result in decreased ability to combat common bacterial pathogens of the lung. Using a mouse model, animals were administered polyinosine-polycytidylic acid (poly I:C) or Toll-like 7 ligand (imiquimod or gardiquimod) intranasally, followed by intratracheal challenge with Streptococcus pneumoniae. We found that animals pre-exposed to poly I:C displayed impaired bacterial clearance and increased mortality. Poly I:C-exposed animals also had decreased ability to clear methicillin-resistant Staphylococcus aureus. Furthermore, we showed that activation of Toll-like receptor (TLR)3 and Retinoic acid inducible gene (RIG-I)/Cardif pathways, which recognize viral nucleic acids in the form of dsRNA, both contribute to poly I:C mediated impairment of bacterial clearance. Finally, we determined that poly I:C administration resulted in significant induction of type I interferons (IFNs), whereas the elimination of type I IFN signaling improved clearance and survival following secondary bacterial pneumonia. Collectively, these results indicate that in the lung, poly I:C administration is sufficient to impair pulmonary host defense against clinically important gram-positive bacterial pathogens, which appears to be mediated by type I IFNs.

摘要

继发性细菌性肺炎是流感和其他呼吸道病毒感染的常见并发症,但病毒诱导对细菌感染易感性的机制还不清楚。特别是,目前尚不清楚宿主对病毒感染的反应,是否独立于病毒造成的损伤,会导致抗菌宿主防御功能受损。在这里,我们试图确定使用各种病毒识别受体配体诱导“抗病毒”免疫状态是否足以导致对抗肺部常见细菌病原体的能力下降。我们使用小鼠模型,经鼻腔给予聚肌苷酸-聚胞苷酸(poly I:C)或 Toll 样受体 7 配体(咪喹莫特或加地喹莫特),然后经气管内滴注肺炎链球菌进行挑战。结果发现,预先用 poly I:C 处理的动物清除细菌的能力受损,死亡率增加。poly I:C 暴露的动物清除耐甲氧西林金黄色葡萄球菌的能力也下降。此外,我们还表明,Toll 样受体(TLR)3 和视黄酸诱导基因(RIG-I)/Cardif 途径的激活,以双链 RNA 的形式识别病毒核酸,都有助于 poly I:C 介导的细菌清除受损。最后,我们确定 poly I:C 给药导致 I 型干扰素(IFN)的显著诱导,而消除 I 型 IFN 信号转导可改善继发性细菌性肺炎后的清除率和存活率。总之,这些结果表明,在肺部,poly I:C 给药足以损害肺部宿主防御对临床重要的革兰氏阳性细菌病原体的防御能力,这似乎是由 I 型 IFNs 介导的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf32/3433467/4e9e4a544fec/pone.0041879.g001.jpg

相似文献

1
Poly I:C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria.
PLoS One. 2012;7(9):e41879. doi: 10.1371/journal.pone.0041879. Epub 2012 Sep 4.
2
Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice.
Am J Physiol Lung Cell Mol Physiol. 2015 Jul 15;309(2):L158-67. doi: 10.1152/ajplung.00338.2014. Epub 2015 May 22.
4
Impact of Type I and III Interferons on Respiratory Superinfections Due to Multidrug-Resistant Pathogens.
J Infect Dis. 2017 Feb 15;215(suppl_1):S58-S63. doi: 10.1093/infdis/jiw466.
6
Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice.
J Immunol. 2011 Feb 1;186(3):1666-1674. doi: 10.4049/jimmunol.1002194. Epub 2010 Dec 22.
7
Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense.
PLoS Pathog. 2017 Jul 13;13(7):e1006496. doi: 10.1371/journal.ppat.1006496. eCollection 2017 Jul.
8
Intracellular RNA recognition pathway activates strong anti-viral response in human mast cells.
Clin Exp Immunol. 2013 Apr;172(1):121-8. doi: 10.1111/cei.12042.
9
Role of Interleukin-12 in Protection against Pulmonary Infection with Methicillin-Resistant Staphylococcus aureus.
Antimicrob Agents Chemother. 2015 Oct;59(10):6308-16. doi: 10.1128/AAC.00968-15. Epub 2015 Jul 27.

引用本文的文献

2
Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy.
Signal Transduct Target Ther. 2025 Mar 19;10(1):90. doi: 10.1038/s41392-025-02174-2.
3
Microbiome-host interactions in the pathogenesis of acute exacerbation of chronic obstructive pulmonary disease.
Front Cell Infect Microbiol. 2024 Jul 18;14:1386201. doi: 10.3389/fcimb.2024.1386201. eCollection 2024.
4
Bacterial outer membrane vesicles bound to bacteriophages modulate neutrophil responses to bacterial infection.
Front Cell Infect Microbiol. 2023 Oct 26;13:1250339. doi: 10.3389/fcimb.2023.1250339. eCollection 2023.
5
TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase.
Nat Commun. 2023 Nov 14;14(1):7349. doi: 10.1038/s41467-023-42913-z.
6
Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2.
Acta Pharm Sin B. 2022 Apr;12(4):1624-1635. doi: 10.1016/j.apsb.2022.02.019. Epub 2022 Feb 28.
7
Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons.
Viruses. 2021 Aug 30;13(9):1725. doi: 10.3390/v13091725.
8
Outcomes of respiratory viral-bacterial co-infection in adult hospitalized patients.
EClinicalMedicine. 2021 Jun 10;37:100955. doi: 10.1016/j.eclinm.2021.100955. eCollection 2021 Jul.
9
Altered Signal Transduction in the Immune Response to Influenza Virus and or Co-Infections.
Int J Mol Sci. 2021 May 22;22(11):5486. doi: 10.3390/ijms22115486.

本文引用的文献

1
Pneumonia complicating pandemic (H1N1) 2009: risk factors, clinical features, and outcomes.
Medicine (Baltimore). 2011 Sep;90(5):328-336. doi: 10.1097/MD.0b013e31822e67a7.
3
Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice.
J Immunol. 2011 Feb 1;186(3):1666-1674. doi: 10.4049/jimmunol.1002194. Epub 2010 Dec 22.
5
Respiratory syncytial virus and Staphylococcus aureus coinfection in children hospitalized with pneumonia.
Pediatr Infect Dis J. 2010 Nov;29(11):1048-50. doi: 10.1097/INF.0b013e3181eb7315.
6
Peroxisomes are signaling platforms for antiviral innate immunity.
Cell. 2010 May 14;141(4):668-81. doi: 10.1016/j.cell.2010.04.018. Epub 2010 May 6.
7
Toll-like receptor 3 agonist protection against experimental Francisella tularensis respiratory tract infection.
Infect Immun. 2010 Apr;78(4):1700-10. doi: 10.1128/IAI.00736-09. Epub 2010 Feb 1.
8
Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections.
Arch Pathol Lab Med. 2010 Feb;134(2):235-43. doi: 10.5858/134.2.235.
9
Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice.
J Clin Invest. 2009 Jul;119(7):1910-20. doi: 10.1172/JCI35412.
10
Activation of toll-like receptor signaling pathway for protection against influenza virus infection.
Vaccine. 2009 May 26;27(25-26):3481-3. doi: 10.1016/j.vaccine.2009.01.048. Epub 2009 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验