Radivojevic Ivana, Bazzan Giorgio, Burton-Pye Benjamin P, Ithisuphalap Kemakorn, Saleh Raihan, Durstock Michael F, Francesconi Lynn C, Drain Charles Michael
Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, 45433, The Rockefeller University, New York, New York 10065.
J Phys Chem C Nanomater Interfaces. 2012 Aug 2;116(30):15867-15877. doi: 10.1021/jp301853d. Epub 2012 Jun 26.
Metalloporphyrin and metallophthalocyanine dyes ligating Hf(IV) and Zr(IV) ions bind to semiconductor oxide surfaces such as TiO(2) via the protruding group IV metal ions. The use of oxophylic metal ions with large ionic radii that protrude from the macrocycle is a unique mode of attaching chromophores to oxide surfaces in the design of dye-sensitized solar cells (DSSCs). Our previous report on the structure and physical properties of ternary complexes wherein the Hf(IV) and Zr(IV) ions are ligated to both a porphyrinoid and to a defect site on a polyoxometalate (POM) represents a model for this new way of binding dyes to oxide surfaces. The Zr(IV) and Hf(IV) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) with two ligated acetates, (TPP)Hf(OAc)(2) and (TPP)Zr(OAc)(2), and the corresponding metallophthalocyanine (Pc) diacetate complexes, (Pc)Hf(OAc)(2) and (Pc)Zr(OAc)(2), were evaluated as novel dyes for the fabrication of dye-sensitized solar cells. Similarly to the ternary complexes with the POM, the oxide surface replaces the acetates to affect binding. In DSSCs the Zr(IV) phthalocyanine dye performs better than the Zr(IV) porphyrin dye, and reaches an overall efficiency of ~ 1.0%. The Hf(IV) dyes are less efficient. The photophysical properties of these complexes in solution suggested energetically favorable injection of electrons into the conduction band of TiO(2) semiconductor nanoparticles, as well as a good band gap match with I(3) (-)/I(-) pair in liquid 1-butyl-3-methyl imidazolium iodide. The combination of blue absorbing TPP with the red absorbing Pc complexes can increase the absorbance of solar light in the device; however, the overall conversion efficiency of DSSCs using TiO(2) nanoparticles treated with a mixture of both Zr(IV) complexes is comparable, but not greater than, the single (Pc)Zr. Thus, surface bound (TPP)Zr increases the absorbance in blue region of the spectra, but at the cost of diminished absorbance in the red in this DSSC architecture.
与铪(IV)和锆(IV)离子配位的金属卟啉和金属酞菁染料通过突出的第IV族金属离子与半导体氧化物表面(如TiO₂)结合。在染料敏化太阳能电池(DSSC)的设计中,使用具有大离子半径且从大环突出的亲氧金属离子是将发色团连接到氧化物表面的独特方式。我们之前关于三元配合物结构和物理性质的报告,其中铪(IV)和锆(IV)离子与卟啉类化合物以及多金属氧酸盐(POM)上的缺陷位点配位,代表了这种将染料连接到氧化物表面的新方式的模型。5,10,15,20 - 四苯基卟啉(TPP)的锆(IV)和铪(IV)配合物,带有两个配位的乙酸根,即(TPP)Hf(OAc)₂和(TPP)Zr(OAc)₂,以及相应的金属酞菁(Pc)二乙酸根配合物,(Pc)Hf(OAc)₂和(Pc)Zr(OAc)₂,被评估为用于制造染料敏化太阳能电池的新型染料。与含有POM的三元配合物类似,氧化物表面取代乙酸根以影响结合。在DSSC中,锆(IV)酞菁染料的性能优于锆(IV)卟啉染料,总效率达到约1.0%。铪(IV)染料效率较低。这些配合物在溶液中的光物理性质表明,电子能够有效地注入TiO₂半导体纳米颗粒的导带,并且与1 - 丁基 - 3 - 甲基咪唑碘化物中的I₃⁻/I⁻对具有良好的带隙匹配。蓝色吸收的TPP与红色吸收的Pc配合物相结合可以增加器件对太阳光的吸收率;然而,使用两种锆(IV)配合物混合物处理的TiO₂纳米颗粒的DSSC的总转换效率相当,但不高于单一的(Pc)Zr。因此,表面结合的(TPP)Zr增加了光谱蓝色区域的吸收率,但在这种DSSC结构中以牺牲红色区域的吸收率为代价。