Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan.
J Biomed Mater Res A. 2013 Apr;101(4):954-62. doi: 10.1002/jbm.a.34397. Epub 2012 Sep 10.
GGT-GSB composite was prepared by mixing a biodegradable GGT composite containing genipin-crosslinked gelatin and β-tricalcium phosphate with Gu-Sui-Bu extract (GSB) (Drynaria fortunei (Kunze) J. Sm.), a traditional Chinese medicine. Then, porous GGT and GGT-GSB scaffolds were fabricated using a salt-leaching method. The GGT and GGT-GSB scaffolds thus obtained had a macroporous structure and high porosity. Rabbit bone marrow stromal cells (BMSCs) were seeded onto GGT and GGT-GSB scaffolds. The biological response of rabbit calvarial bone to these scaffolds was considered to evaluate the potential of the scaffolds for use in bone tissue engineering. After 8 weeks of implantation, each scaffold induced new bone formation at a cranial bone defect, as was verified by X-ray microradiography. The BMSC-seeded GGT-GSB scaffolds induced more new bone formation than the BMSC-seeded GGT and acellular scaffolds. These observations suggest that an autologous BMSCs-seeded porous GGT-GSB scaffold can be adopted in bone engineering in vivo and has great potential for regenerating defective bone tissue.
GGT-GSB 复合材料是通过将含有京尼平交联明胶和β-磷酸三钙的可生物降解 GGT 复合材料与中药骨碎补提取物(GSB)(骨碎补(Kunze)J. Sm.)混合制备的。然后,使用盐浸出法制备多孔 GGT 和 GGT-GSB 支架。由此获得的 GGT 和 GGT-GSB 支架具有大孔结构和高孔隙率。将兔骨髓基质细胞(BMSCs)接种到 GGT 和 GGT-GSB 支架上。考虑到支架在骨组织工程中的潜在应用,评估了兔颅骨对这些支架的生物反应。植入 8 周后,通过 X 射线微射线照相术证实,每个支架在颅骨缺损处诱导新骨形成。与 BMSC 接种的 GGT 和无细胞支架相比,BMSC 接种的 GGT-GSB 支架诱导更多的新骨形成。这些观察结果表明,自体 BMSCs 接种的多孔 GGT-GSB 支架可用于体内骨工程,并具有再生缺损骨组织的巨大潜力。