Department of Medicine, Division of Cardiology, Stanford School of Medicine, Stanford, CA, USA.
Circulation. 2012 Sep 11;126(11 Suppl 1):S20-8. doi: 10.1161/CIRCULATIONAHA.111.084913.
Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts.
We used the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells. Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared with unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging, and positron emission tomography. Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function 2 weeks after cell delivery, as assessed by echocardiography (P=0.002) and MRI (P=0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated human endothelial cells, which enhanced hind limb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging.
The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types.
人心肌祖细胞(hCPCs)是心肌梗死后再生修复的有前途的细胞来源。要充分发挥其治疗潜力,可能需要在体外对细胞进行稳定的基因修饰。使用简便的方法将转基因物特异性整合到已知基因组环境中,对干细胞进行安全的基因工程改造,将显著提高细胞疗法在多种临床情况下的整体安全性和疗效。
我们使用 phiC31 位点特异性重组酶将三重融合报告基因靶向整合到 hCPCs 和人内皮细胞的已知染色体环境中。报告基因从其独特的染色体整合位点稳定表达,不会导致明显的基因组不稳定性或细胞表型的不利变化。即,与未改变的对照 hCPCs 相比,phiC31 修饰的 hCPCs 在其分化倾向、细胞增殖率和全基因组表达谱方面没有变化。三重融合报告基因的表达使我们能够使用荧光显微镜、生物发光成像和正电子发射断层扫描术对体外和体内的细胞命运进行多模态评估。心肌内移植基因修饰的 hCPCs 可显著改善细胞移植后 2 周的心肌功能,通过超声心动图(P=0.002)和 MRI(P=0.001)评估。我们还证明了基因修饰分化的人内皮细胞的可行性和治疗功效,这可增强激光多普勒成像上的后肢灌注(移植后第 7 天和第 14 天,P<0.05)。
phiC31 整合酶基因组修饰系统是一种安全、高效的工具,可实现报告基因在祖细胞和分化细胞类型中的特异性整合。