Suppr超能文献

用于研究股骨颈方向的三维轴。

A three-dimensional axis for the study of femoral neck orientation.

机构信息

UMR 7179 CNRS-Muséum National d'Histoire Naturelle, Paris Cedex, France.

出版信息

J Anat. 2012 Nov;221(5):465-76. doi: 10.1111/j.1469-7580.2012.01565.x. Epub 2012 Sep 12.

Abstract

A common problem in the quantification of the orientation of the femoral neck is the difficulty to determine its true axis; however, this axis is typically estimated visually only. Moreover, the orientation of the femoral neck is commonly analysed using angles that are dependent on anatomical planes of reference and only quantify the orientation in two dimensions. The purpose of this study is to establish a method to determine the three-dimensional orientation of the femoral neck using a three-dimensional model. An accurate determination of the femoral neck axis requires a reconsideration of the complex architecture of the proximal femur. The morphology of the femoral neck results from both the medial and arcuate trabecular systems, and the asymmetry of the cortical bone. Given these considerations, two alternative models, in addition to the cylindrical one frequently assumed, were tested. The surface geometry of the femoral neck was subsequently used to fit one cylinder, two cylinders and successive cross-sectional ellipses. The model based on successive ellipses provided a significantly smaller average deviation than the two other models (P < 0.001) and reduced the observer-induced measurement error. Comparisons with traditional measurements and analyses on a sample of 91 femora were also performed to assess the validity of the model based on successive ellipses. This study provides a semi-automatic and accurate method for the determination of the functional three-dimensional femoral neck orientation avoiding the use of a reference plane. This innovative method has important implications for future studies that aim to document and understand the change in the orientation of the femoral neck associated with the acquisition of a bipedal gait in humans. Moreover, the precise determination of the three-dimensional orientation has implications in current research involved in developing clinical applications in diagnosis, hip surgery and rehabilitation.

摘要

在确定股骨颈方向的过程中,一个常见的问题是难以确定其真实轴线;然而,该轴线通常仅通过目测进行估计。此外,股骨颈的方向通常通过依赖于解剖参考平面的角度进行分析,仅在二维平面上量化其方向。本研究旨在建立一种使用三维模型确定股骨颈三维方向的方法。准确确定股骨颈轴线需要重新考虑股骨近端的复杂结构。股骨颈的形态既来自内侧和弧形小梁系统,也来自皮质骨的不对称性。考虑到这些因素,除了经常假设的圆柱形模型外,还测试了另外两种替代模型。随后,使用股骨颈的表面几何形状拟合一个圆柱、两个圆柱和连续的横截面椭圆。基于连续椭圆的模型比另外两个模型(P < 0.001)提供了更小的平均偏差,并减少了观察者引起的测量误差。还对 91 个股骨样本进行了与传统测量和分析的比较,以评估基于连续椭圆的模型的有效性。本研究提供了一种半自动且准确的方法,用于确定功能三维股骨颈方向,避免使用参考平面。这种创新方法对于未来旨在记录和理解与人类获得双足步态相关的股骨颈方向变化的研究具有重要意义。此外,精确确定三维方向对当前涉及诊断、髋关节手术和康复的临床应用开发的研究具有重要意义。

相似文献

1
A three-dimensional axis for the study of femoral neck orientation.
J Anat. 2012 Nov;221(5):465-76. doi: 10.1111/j.1469-7580.2012.01565.x. Epub 2012 Sep 12.
2
Three-dimensional morphological analysis of the femoral neck torsion angle-an anatomical study.
J Orthop Surg Res. 2020 May 27;15(1):192. doi: 10.1186/s13018-020-01712-8.
4
A semi-automated method for measuring femoral shape to derive version and its comparison with existing methods.
Int J Numer Method Biomed Eng. 2014 Nov;30(11):1314-25. doi: 10.1002/cnm.2659. Epub 2014 Jul 25.
6
Measurement of femoral neck anteversion in 3D. Part 1: 3D imaging method.
Med Biol Eng Comput. 2000 Nov;38(6):603-9. doi: 10.1007/BF02344864.
7
Fully automated measurement of femoral neck axis line in anatomical coordinate system using CT images.
Med Biol Eng Comput. 2024 Jun;62(6):1837-1849. doi: 10.1007/s11517-024-03037-8. Epub 2024 Feb 24.
9
Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture.
Bone. 2007 Jan;40(1):169-74. doi: 10.1016/j.bone.2006.06.018. Epub 2006 Jul 28.
10

引用本文的文献

1
Influence of limb position on femoral neck anteversion angle measurement during computed tomography imaging.
Asia Pac J Sports Med Arthrosc Rehabil Technol. 2025 Apr 15;40:29-34. doi: 10.1016/j.asmart.2025.04.003. eCollection 2025 Apr.
2
Exploring developmental changes in femoral midneck cross-sectional properties.
Anat Rec (Hoboken). 2025 Aug;308(8):2212-2233. doi: 10.1002/ar.25618. Epub 2024 Dec 27.
3
Fully automated measurement of femoral neck axis line in anatomical coordinate system using CT images.
Med Biol Eng Comput. 2024 Jun;62(6):1837-1849. doi: 10.1007/s11517-024-03037-8. Epub 2024 Feb 24.
4
Safe range of femoral neck system insertion and the risk of perforation.
J Orthop Surg Res. 2023 Sep 19;18(1):703. doi: 10.1186/s13018-023-04205-6.
6
Offset nail fixation for intertrochanteric fractures improves reduction and lag screw position.
PLoS One. 2022 Nov 16;17(11):e0276903. doi: 10.1371/journal.pone.0276903. eCollection 2022.
7
Purkait's triangle revisited: role in sex and ancestry estimation.
Forensic Sci Res. 2022 Feb 14;7(3):440-455. doi: 10.1080/20961790.2021.1963396. eCollection 2022.

本文引用的文献

1
Study of femoral torsion during prenatal growth: interpretations associated with the effects of intrauterine pressure.
Am J Phys Anthropol. 2011 Jul;145(3):438-45. doi: 10.1002/ajpa.21521. Epub 2011 May 3.
2
Functional aspects of the abductor muscles of the hip.
J Bone Joint Surg Am. 1947 Jul;29(3):607-19.
3
Function-orientated structural analysis of the proximal human femur.
Cells Tissues Organs. 2009;190(5):247-55. doi: 10.1159/000210065. Epub 2009 Mar 25.
5
Femoral anteversion: a necessary angle or an evolutionary vestige?
J Bone Joint Surg Br. 2007 Oct;89(10):1283-8. doi: 10.1302/0301-620X.89B10.19435.
6
7
The Characters of the English Thigh-Bone.
J Anat Physiol. 1914 Apr;48(Pt 3):238-67.
8
Who's afraid of the big bad Wolff?: "Wolff's law" and bone functional adaptation.
Am J Phys Anthropol. 2006 Apr;129(4):484-98. doi: 10.1002/ajpa.20371.
9
Alternative reliable techniques in femoral torsion measurement.
J Pediatr Orthop B. 2006 Jan;15(1):28-33. doi: 10.1097/01202412-200601000-00006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验