Center for Supports to Research and Education Activities, Kobe University, Nada, Kobe 657-8501, Japan.
J Magn Reson. 2012 Oct;223:41-5. doi: 10.1016/j.jmr.2012.07.020. Epub 2012 Aug 10.
We have developed a high-pressure and high-field electron spin resonance (ESR) system using the combination of a commercially available superconducting quantum interference device (SQUID) magnetometer and a clamp-type piston cylinder pressure cell. The magnetic field range is up to 5 T, and the maximum pressure reaches 1.5 GPa. The most characteristic feature of this system is its easy handling as compared with other high-pressure ESR systems. Moreover, the macroscopic magnetization measurement can be performed simultaneously with the microscopic ESR measurement. In addition to these features, the well-established pressure calibration method utilizing the change of superconducting transition temperature of tin can be applied to this system. By using this system, we obtained pressure dependence of the single ion magnetic anisotropy parameter D of NiSnCl(6)·6H(2)O up to 1.5 GPa precisely, and the magnetization behavior of this material under pressure was explained well by its pressure dependence of the D value.
我们开发了一种使用商业超导量子干涉仪(SQUID)磁强计和夹式活塞圆筒压力池组合的高压高场电子自旋共振(ESR)系统。磁场范围高达 5 T,最大压力达到 1.5 GPa。与其他高压 ESR 系统相比,该系统的最大特点是易于操作。此外,宏观磁化测量可以与微观 ESR 测量同时进行。除了这些特点之外,还可以应用利用锡超导转变温度变化的成熟的压力校准方法。通过使用该系统,我们精确地获得了 NiSnCl(6)·6H(2)O 中单个离子磁各向异性参数 D 随压力的变化关系,直至 1.5 GPa,并通过 D 值随压力的变化很好地解释了该材料在压力下的磁化行为。