Tom Dieck Susanne, Müller Anke, Nehring Anne, Hinz Flora I, Bartnik Ina, Schuman Erin M, Dieterich Daniela C
Max Planck Institute for Brain Research, Department of Synaptic Plasticity, Frankfurt, Germany.
Leibniz Institute for Neurobiology, Research Group Neuralomics, Magdeburg, Germany.
Curr Protoc Cell Biol. 2012 Sep;Chapter 7:7.11.1-7.11.29. doi: 10.1002/0471143030.cb0711s56.
Fluorescent labeling of proteins by genetically encoded fluorescent protein tags has enabled an enhanced understanding of cell biological processes but is restricted to the analysis of a limited number of identified proteins. This approach does not permit, e.g., the unbiased visualization of a full proteome in situ. We describe here a fluorescence-based method to follow proteome-wide patterns of newly synthesized proteins in cultured cells, tissue slices, and a whole organism. This technique is compatible with immunohistochemistry and in situ hybridization. Key to this method is the introduction of a small bio-orthogonal reactive group by metabolic labeling. This is accomplished by replacing the amino acid methionine by the azide-bearing methionine surrogate azidohomoalanine (AHA) in a step very similar to classical radioisotope labeling. Subsequently, an alkyne-bearing fluorophore is covalently attached to the group by "click chemistry"--a copper(I)-catalyzed [3+2]azide-alkyne cycloaddition. By similar means, metabolic labeling can also be performed with the alkyne-bearing homopropargylglycine (HPG) and clicked to an azide-functionalized fluorophore.
通过基因编码的荧光蛋白标签对蛋白质进行荧光标记,有助于增强对细胞生物学过程的理解,但仅限于对有限数量的已鉴定蛋白质进行分析。例如,这种方法无法对完整蛋白质组进行原位无偏差可视化。我们在此描述一种基于荧光的方法,用于追踪培养细胞、组织切片和整个生物体中新合成蛋白质的全蛋白质组模式。该技术与免疫组织化学和原位杂交兼容。此方法的关键是通过代谢标记引入一个小的生物正交反应基团。这是通过在一个与经典放射性同位素标记非常相似的步骤中,用含叠氮基的甲硫氨酸替代物叠氮高丙氨酸(AHA)取代甲硫氨酸来实现的。随后,通过“点击化学”——一种铜(I)催化的[3+2]叠氮-炔环加成反应,将含炔基的荧光团共价连接到该基团上。通过类似的方法,也可以用含炔基的高炔丙基甘氨酸(HPG)进行代谢标记,并与叠氮功能化的荧光团进行点击反应。