Suppr超能文献

多发性硬化小脑浦肯野细胞融合和双核异核体形成。

Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum.

机构信息

Multiple Sclerosis and Stem Cell, School of Clinical Sciences, University of Bristol, Bristol, BS16 1JB, UK.

出版信息

Brain. 2012 Oct;135(Pt 10):2962-72. doi: 10.1093/brain/aws226. Epub 2012 Sep 13.

Abstract

A major conceptual consideration in both endogenous and therapeutic central nervous system repair is how damaged (or senescent) neurons, given their often enormously complex and extensive network of connections, can possibly be replaced. The recent observation of fusion of circulating bone marrow cells with, in particular, cerebellar Purkinje cells, as well as the subsequent formation of stable heterokaryons, offers a tantalizing potential solution to this difficulty. Here, we have explored Purkinje cell fusion and heterokaryon formation in the human brain and the influence of central nervous system inflammation. We analysed post-mortem cerebellum tissue from patients who had multiple sclerosis and from appropriate controls. Purkinje cells were analysed for heterokaryon formation using immunohistochemistry techniques and chromosome composition using fluorescence in situ hybridization. For the first time in humans we show a disease-related increase in Purkinje cell fusion and heterokaryon formation. We have shown that heterokaryon formation takes place in control subjects, and that the frequency of this event is considerably increased in patients with multiple sclerosis, the prototypical inflammatory brain disease, with ~0.4% of Purkinje cells being binucleate heterokaryons. No mononucleate polyploid Purkinje cell heterokaryons were found. The observation that heterokaryon formation in the cerebellum occurs as part of the central nervous system inflammatory reaction suggests a potential mechanism of neural repair. It also suggests an exciting new avenue for therapeutic intervention, as enhancement or manipulation of fusion events may have a therapeutic role in cellular protection in multiple sclerosis.

摘要

在中枢神经系统内源性和治疗性修复中,一个主要的概念性考虑是,受损(或衰老)的神经元如何可能被取代,考虑到它们通常具有极其复杂和广泛的网络连接。最近观察到循环骨髓细胞与小脑浦肯野细胞融合,特别是形成稳定的异核细胞,为解决这一难题提供了诱人的潜在解决方案。在这里,我们探索了人类大脑中浦肯野细胞融合和异核细胞形成以及中枢神经系统炎症的影响。我们分析了多发性硬化症患者和适当对照者的死后小脑组织。使用免疫组织化学技术分析异核细胞形成,使用荧光原位杂交分析染色体组成。我们首次在人类中显示出与疾病相关的浦肯野细胞融合和异核细胞形成增加。我们已经表明,异核细胞形成发生在对照组中,在多发性硬化症患者中,这种事件的频率明显增加,多发性硬化症是典型的炎症性脑疾病,约有 0.4%的浦肯野细胞是双核异核细胞。未发现单核多倍体浦肯野细胞异核细胞。观察到小脑中的异核细胞形成是中枢神经系统炎症反应的一部分,这表明了一种潜在的神经修复机制。它还为治疗干预提供了一个令人兴奋的新途径,因为融合事件的增强或操纵可能在多发性硬化症的细胞保护中发挥治疗作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验