Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.
J Biol Chem. 2012 Nov 2;287(45):37594-609. doi: 10.1074/jbc.M112.365197. Epub 2012 Sep 12.
The Ca(2+)/calcineurin-dependent transcription factor NFAT (nuclear factor of activated T-cells) is implicated in regulating dendritic and axonal development, synaptogenesis, and neuronal survival. Despite the increasing appreciation for the importance of NFAT-dependent transcription in the nervous system, the regulation and function of specific NFAT isoforms in neurons are poorly understood. Here, we compare the activation of NFATc3 and NFATc4 in hippocampal and dorsal root ganglion neurons following electrically evoked elevations of intracellular Ca(2+) concentration (Ca(2+)). We find that NFATc3 undergoes rapid dephosphorylation and nuclear translocation that are essentially complete within 20 min, although NFATc4 remains phosphorylated and localized to the cytosol, only exhibiting nuclear localization following prolonged (1-3 h) depolarization. Knocking down NFATc3, but not NFATc4, strongly diminished NFAT-mediated transcription induced by mild depolarization in neurons. By analyzing NFATc3/NFATc4 chimeras, we find that the region containing the serine-rich region-1 (SRR1) mildly affects initial NFAT translocation, although the region containing the serine-proline repeats is critical for determining the magnitude of NFAT activation and nuclear localization upon depolarization. Knockdown of glycogen synthase kinase 3β (GSK3β) significantly increased the depolarization-induced nuclear localization of NFATc4. In contrast, inhibition of p38 or mammalian target of rapamycin (mTOR) kinases had no significant effect on nuclear import of NFATc4. Thus, electrically evoked Ca(2+) elevation in neurons rapidly and strongly activates NFATc3, whereas activation of NFATc4 requires a coincident increase in Ca(2+) and suppression of GSK3β, with differences in the serine-proline-containing region giving rise to these distinct activation properties of NFATc3 and NFATc4.
钙/钙调神经磷酸酶依赖性转录因子 NFAT(激活 T 细胞的核因子)参与调节树突和轴突发育、突触形成和神经元存活。尽管人们越来越认识到 NFAT 依赖性转录在神经系统中的重要性,但神经元中特定 NFAT 同工型的调节和功能仍知之甚少。在这里,我们比较了电诱发细胞内 Ca2+浓度升高([Ca2+]i)后海马和背根神经节神经元中 NFATc3 和 NFATc4 的激活。我们发现 NFATc3 迅速去磷酸化并转位到核内,尽管 NFATc4 仍然保持磷酸化并定位于细胞质中,仅在长时间(1-3 小时)去极化后才表现出核定位。敲低 NFATc3,但不敲低 NFATc4,强烈减弱了神经元中轻度去极化诱导的 NFAT 介导的转录。通过分析 NFATc3/NFATc4 嵌合体,我们发现包含丝氨酸丰富区 1(SRR1)的区域轻度影响 NFAT 的初始易位,尽管包含丝氨酸-脯氨酸重复的区域对于确定去极化时 NFAT 的激活幅度和核定位至关重要。糖原合酶激酶 3β(GSK3β)的敲低显著增加了 NFATc4 去极化诱导的核定位。相比之下,抑制 p38 或哺乳动物雷帕霉素靶蛋白(mTOR)激酶对 NFATc4 的核输入没有显著影响。因此,神经元中电诱发的[Ca2+]i 升高迅速且强烈地激活 NFATc3,而 NFATc4 的激活需要[Ca2+]i 的同时增加和 GSK3β 的抑制,含有丝氨酸-脯氨酸的区域的差异导致 NFATc3 和 NFATc4 具有不同的激活特性。