Lans Isaias, Frago Susana, Medina Milagros
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain.
Biochim Biophys Acta. 2012 Dec;1817(12):2118-27. doi: 10.1016/j.bbabio.2012.08.008. Epub 2012 Sep 7.
The chemical versatility of flavin cofactors within the flavoprotein environment allows them to play main roles in the bioenergetics of all type of organisms, particularly in energy transformation processes such as photosynthesis or oxidative phosphorylation. Despite the large diversity of properties shown by flavoproteins and of the biological processes in which they are involved, only two flavin cofactors, FMN and FAD (both derived from the 7,8-dimethyl-10-(1'-D-ribityl)-isoalloxazine), are usually found in these proteins. Using theoretical and experimental approaches we have carried out an evaluation of the effects introduced upon substituting the 7- and/or 8-methyls of the isoalloxazine ring in the chemical and oxido-reduction properties of the different atoms of the ring on free flavins and on the photosynthetic Anabaena Flavodoxin (a flavoprotein that replaces Ferredoxin as electron carrier from Photosystem I to Ferredoxin-NADP(+) reductase). In Anabaena Flavodoxin both the protein environment and the redox state contribute to modulate the chemical reactivity of the isoalloxazine ring. Anabaena apoflavodoxin is shown to be designed to stabilise/destabilise each one of the FMN redox states (but not of the analogues produced upon substitution of the 7- and/or 8-methyls groups) in the adequate proportions to provide Flavodoxin with the particular properties required for the functions in which it is involved in vivo. The 7- and/or 8-methyl groups of the ixoalloxazine can be discarded as the gate for electrons exchange in Anabaena Fld, but a key role in this process is envisaged for the C6 atom of the flavin and the backbone atoms of Asn58.
黄素辅因子在黄素蛋白环境中的化学多功能性使其在所有类型生物体的生物能量学中发挥主要作用,特别是在诸如光合作用或氧化磷酸化等能量转换过程中。尽管黄素蛋白表现出多种多样的特性,且参与了众多生物过程,但在这些蛋白质中通常仅发现两种黄素辅因子,即FMN和FAD(两者均衍生自7,8 - 二甲基 - 10 -(1'-D - 核糖基) - 异咯嗪)。我们运用理论和实验方法,评估了异咯嗪环的7 - 和/或8 - 甲基被取代后,对游离黄素以及光合鱼腥藻黄素氧还蛋白(一种黄素蛋白,它替代铁氧化还原蛋白作为从光系统I到铁氧化还原蛋白 - NADP(+)还原酶的电子载体)中环上不同原子的化学和氧化还原性质所产生的影响。在鱼腥藻黄素氧还蛋白中,蛋白质环境和氧化还原状态均有助于调节异咯嗪环的化学反应性。研究表明,鱼腥藻脱辅基黄素氧还蛋白旨在以适当比例稳定/不稳定FMN的每种氧化还原状态(但不包括7 - 和/或8 - 甲基取代后产生的类似物),从而为黄素氧还蛋白提供其在体内所参与功能所需的特定性质。异咯嗪的7 - 和/或8 - 甲基可被排除作为鱼腥藻黄素氧还蛋白中电子交换的通道,但黄素的C6原子和Asn58的主链原子在这一过程中被设想发挥关键作用。