Suppr超能文献

基于密度泛函理论的卤代苯酚对绿色荧光蛋白急性毒性的定量构效关系研究。

QSAR of acute toxicity of halogenated phenol to green fluorescent protein by using density functional theory.

机构信息

College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, Zhejiang, People's Republic of China.

出版信息

Bull Environ Contam Toxicol. 2012 Nov;89(5):950-4. doi: 10.1007/s00128-012-0819-0. Epub 2012 Sep 16.

Abstract

A novel approach was established to predict toxicity of environmental pollutants by using green fluorescent protein (GFP) as bio-marker. In the approach, recombinant Escherichia coli was constructed to express GFP. The toxicity values (-lgEC (50)) of 14 halogenated phenols to recombinant E. coli with GFP gene were measured. And optimized calculation was carried out at B3LYP/6-31G* level using density functional theory method. Based on the MTLSER model, the obtained parameters were taken as theoretical descriptors to establish the novel QSAR model for predicting -lgEC (50) (R (2) = 0.922). The model includes two variables (standard entropy (S (θ)) and the most negative atomic net charges of the molecule (q (-))). The results of cross-validation test (q (2) = 0.868) indicate the model of this study has optimum stability, which shows that it is feasible to predict to toxicity of chemistry utilizing recombinant E. coli with GFP gene.

摘要

建立了一种新的方法,通过使用绿色荧光蛋白(GFP)作为生物标志物来预测环境污染物的毒性。在该方法中,构建了表达 GFP 的重组大肠杆菌。测量了 14 种卤代酚对具有 GFP 基因的重组大肠杆菌的毒性值(-lgEC(50))。并使用密度泛函理论方法在 B3LYP/6-31G*水平上进行了优化计算。基于 MTLSER 模型,将获得的参数作为理论描述符,建立了预测-lgEC(50)的新型 QSAR 模型(R(2)=0.922)。该模型包括两个变量(标准熵(S(θ))和分子的最负原子净电荷(q(-)))。交叉验证测试的结果(q(2)=0.868)表明,本研究的模型具有最佳的稳定性,这表明利用具有 GFP 基因的重组大肠杆菌来预测化学毒性是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验