Suppr超能文献

ITPR1 中的错义突变导致常染色体显性遗传性先天性进行性小脑共济失调。

Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia.

机构信息

Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.

出版信息

Orphanet J Rare Dis. 2012 Sep 17;7:67. doi: 10.1186/1750-1172-7-67.

Abstract

BACKGROUND

Congenital nonprogressive spinocerebellar ataxia is characterized by early gross motor delay, hypotonia, gait ataxia, mild dysarthria and dysmetria. The clinical presentation remains fairly stable and may be associated with cerebellar atrophy. To date, only a few families with autosomal dominant congenital nonprogressive spinocerebellar ataxia have been reported. Linkage to 3pter was demonstrated in one large Australian family and this locus was designated spinocerebellar ataxia type 29. The objective of this study is to describe an unreported Canadian family with autosomal dominant congenital nonprogressive spinocerebellar ataxia and to identify the underlying genetic causes in this family and the original Australian family.

METHODS AND RESULTS

Exome sequencing was performed for the Australian family, resulting in the identification of a heterozygous mutation in the ITPR1 gene. For the Canadian family, genotyping with microsatellite markers and Sanger sequencing of ITPR1 gene were performed; a heterozygous missense mutation in ITPR1 was identified.

CONCLUSIONS

ITPR1 encodes inositol 1,4,5-trisphosphate receptor, type 1, a ligand-gated ion channel that mediates calcium release from the endoplasmic reticulum. Deletions of ITPR1 are known to cause spinocerebellar ataxia type 15, a distinct and very slowly progressive form of cerebellar ataxia with onset in adulthood. Our study demonstrates for the first time that, in addition to spinocerebellar ataxia type 15, alteration of ITPR1 function can cause a distinct congenital nonprogressive ataxia; highlighting important clinical heterogeneity associated with the ITPR1 gene and a significant role of the ITPR1-related pathway in the development and maintenance of the normal functions of the cerebellum.

摘要

背景

先天性进行性脊髓小脑共济失调的特征为早期粗大运动迟缓、张力减退、步态共济失调、轻度构音障碍和运动失调。临床表现相对稳定,可能与小脑萎缩有关。迄今为止,仅报道了少数几个常染色体显性遗传性先天性进行性脊髓小脑共济失调的家族。在一个大型澳大利亚家族中已证实与 3pter 连锁,该基因座被命名为脊髓小脑共济失调 29 型。本研究的目的是描述一个未报道的加拿大常染色体显性遗传性先天性进行性脊髓小脑共济失调家族,并鉴定该家族和原始澳大利亚家族的潜在遗传原因。

方法和结果

对澳大利亚家族进行外显子组测序,结果发现 ITPR1 基因存在杂合突变。对于加拿大家族,进行微卫星标记基因分型和 ITPR1 基因的 Sanger 测序;鉴定出 ITPR1 中的杂合错义突变。

结论

ITPR1 编码肌醇 1,4,5-三磷酸受体 1 型,这是一种配体门控离子通道,介导内质网中钙离子释放。ITPR1 的缺失已知会导致脊髓小脑共济失调 15 型,这是一种独特的、进展非常缓慢的成年起病的小脑性共济失调。我们的研究首次表明,除了脊髓小脑共济失调 15 型之外,ITPR1 功能的改变还可引起明显的先天性非进行性共济失调;突出了与 ITPR1 基因相关的重要临床异质性,以及 ITPR1 相关途径在小脑正常功能的发育和维持中的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0065/3545966/0249ae1e5d0c/1750-1172-7-67-1.jpg

相似文献

1
5
Spinocerebellar ataxia type 15 caused by missense variants in the ITPR1 gene.
Eur J Neurol. 2023 Aug;30(8):2539-2543. doi: 10.1111/ene.15840. Epub 2023 May 19.
6
Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families.
Neurology. 2008 Aug 19;71(8):547-51. doi: 10.1212/01.wnl.0000311277.71046.a0. Epub 2008 Jun 25.
8
A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca signal patterns.
J Neurol. 2017 Jul;264(7):1444-1453. doi: 10.1007/s00415-017-8545-5. Epub 2017 Jun 15.
9
Missense mutation in the ITPR1 gene presenting with ataxic cerebral palsy: Description of an affected family and literature review.
Neurol Neurochir Pol. 2017 Nov-Dec;51(6):497-500. doi: 10.1016/j.pjnns.2017.06.012. Epub 2017 Jul 8.

引用本文的文献

2
IP3 receptor depletion in a spontaneous canine model of Charcot-Marie-Tooth disease 1J with amelogenesis imperfecta.
PLoS Genet. 2025 Jan 13;21(1):e1011328. doi: 10.1371/journal.pgen.1011328. eCollection 2025 Jan.
4
Dominant negative variants in ITPR3 impair T cell Ca2+ dynamics causing combined immunodeficiency.
J Exp Med. 2025 Jan 6;222(1). doi: 10.1084/jem.20220979. Epub 2024 Nov 19.
5
A pleiotropic recurrent dominant variant causes a complex multisystemic disease.
Sci Adv. 2024 Sep 13;10(37):eado5545. doi: 10.1126/sciadv.ado5545.
6
Phenotypic Spectrum and Natural History of Gillespie Syndrome. An Updated Literature Review with 2 New Cases.
Cerebellum. 2024 Dec;23(6):2655-2670. doi: 10.1007/s12311-024-01733-7. Epub 2024 Aug 23.
8
The clinical utility and diagnostic implementation of human subject cell transdifferentiation followed by RNA sequencing.
Am J Hum Genet. 2024 May 2;111(5):841-862. doi: 10.1016/j.ajhg.2024.03.007. Epub 2024 Apr 8.
9
Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia.
Neurobiol Dis. 2024 Jun 1;195:106492. doi: 10.1016/j.nbd.2024.106492. Epub 2024 Apr 2.
10
A-T neurodegeneration and DNA damage-induced transcriptional stress.
DNA Repair (Amst). 2024 Mar;135:103647. doi: 10.1016/j.dnarep.2024.103647. Epub 2024 Feb 15.

本文引用的文献

1
Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family.
Biochem Biophys Res Commun. 2011 Jul 15;410(4):754-8. doi: 10.1016/j.bbrc.2011.06.043. Epub 2011 Jun 13.
2
Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features.
J Med Genet. 2011 Jun;48(6):407-12. doi: 10.1136/jmg.2010.087023. Epub 2011 Mar 1.
3
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.
Nucleic Acids Res. 2010 Sep;38(16):e164. doi: 10.1093/nar/gkq603. Epub 2010 Jul 3.
4
Inositol trisphosphate receptor Ca2+ release channels in neurological diseases.
Pflugers Arch. 2010 Jul;460(2):481-94. doi: 10.1007/s00424-010-0826-0. Epub 2010 Apr 10.
5
Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2.
J Neurosci. 2009 Jul 22;29(29):9148-62. doi: 10.1523/JNEUROSCI.0660-09.2009.
6
The Sequence Alignment/Map format and SAMtools.
Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8.
7
CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait.
PLoS Genet. 2009 May;5(5):e1000487. doi: 10.1371/journal.pgen.1000487. Epub 2009 May 22.
8
Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验