Suppr超能文献

心脏疾病中纤维母细胞的起源和致心律失常潜能。

The origin and arrhythmogenic potential of fibroblasts in cardiac disease.

机构信息

Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, 522 First Avenue, Smilow Building 8th Floor, New York, NY 10016, USA.

出版信息

J Cardiovasc Transl Res. 2012 Dec;5(6):760-7. doi: 10.1007/s12265-012-9408-1. Epub 2012 Sep 18.

Abstract

Fibroblasts play a major role in normal cardiac physiology and in the response of the heart to injury and disease. Cardiac electrophysiological research has primarily focused on the mechanisms of remodeling that accompany cardiac disease with an emphasis on myocyte electrophysiology. Recently, there has been increasing interest in the potential role of fibroblasts in cardiac electrophysiology. This review focuses on the arrhythmia mechanisms involving interactions between myocytes and fibroblasts. We also discuss the available evidence supporting the contribution of intracardiac and extracardiac sources to the fibroblast and myofibroblast populations in diseased hearts.

摘要

成纤维细胞在正常心脏生理学和心脏对损伤和疾病的反应中起着重要作用。心脏电生理学研究主要集中在伴随心脏病的重构机制上,重点是心肌细胞电生理学。最近,人们对成纤维细胞在心脏电生理学中的潜在作用越来越感兴趣。这篇综述的重点是涉及心肌细胞和成纤维细胞相互作用的心律失常机制。我们还讨论了支持心脏疾病中心内和心外来源对成纤维细胞和肌成纤维细胞群体的贡献的现有证据。

相似文献

1
The origin and arrhythmogenic potential of fibroblasts in cardiac disease.
J Cardiovasc Transl Res. 2012 Dec;5(6):760-7. doi: 10.1007/s12265-012-9408-1. Epub 2012 Sep 18.
2
The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts.
J Cardiovasc Pharmacol. 2011 Apr;57(4):380-8. doi: 10.1097/FJC.0b013e31820cda19.
3
TGF-β (Transforming Growth Factor-β) Plays a Pivotal Role in Cardiac Myofibroblast Arrhythmogenicity.
Circ Arrhythm Electrophysiol. 2017 May;10(5):e004567. doi: 10.1161/CIRCEP.116.004567.
4
Human Cardiac Mesenchymal Stem Cells Remodel in Disease and Can Regulate Arrhythmia Substrates.
Circ Arrhythm Electrophysiol. 2020 Oct;13(10):e008740. doi: 10.1161/CIRCEP.120.008740. Epub 2020 Jul 29.
5
Arrhythmogenic implications of fibroblast-myocyte interactions.
Circ Arrhythm Electrophysiol. 2012 Apr;5(2):442-52. doi: 10.1161/CIRCEP.110.957647.
6
Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils.
J Mol Cell Cardiol. 2014 May;70:83-91. doi: 10.1016/j.yjmcc.2013.10.018. Epub 2013 Oct 31.
7
Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends?
J Cardiovasc Transl Res. 2012 Dec;5(6):768-82. doi: 10.1007/s12265-012-9404-5. Epub 2012 Sep 27.
8
Cardiac Fibrosis and Fibroblasts.
Cells. 2021 Jul 6;10(7):1716. doi: 10.3390/cells10071716.
9
Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts.
PLoS One. 2019 Jun 18;14(6):e0217993. doi: 10.1371/journal.pone.0217993. eCollection 2019.
10
Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems.
J Mol Cell Cardiol. 2016 May;94:22-31. doi: 10.1016/j.yjmcc.2016.03.005. Epub 2016 Mar 18.

引用本文的文献

2
An Experimental and Numerical Investigation of Cardiac Tissue-Patch Interrelation.
J Biomech Eng. 2023 Aug 1;145(8). doi: 10.1115/1.4062736.
3
In silico analysis of the contribution of cardiomyocyte-fibroblast electromechanical interaction to the arrhythmia.
Front Physiol. 2023 Mar 10;14:1123609. doi: 10.3389/fphys.2023.1123609. eCollection 2023.
4
Cardiac Cell Patterning on Customized Microelectrode Arrays for Electrophysiological Recordings.
Micromachines (Basel). 2021 Oct 31;12(11):1351. doi: 10.3390/mi12111351.
6
Ca signalling in fibroblasts and the therapeutic potential of K3.1 channel blockers in fibrotic diseases.
Br J Pharmacol. 2020 Mar;177(5):1003-1024. doi: 10.1111/bph.14939. Epub 2020 Feb 3.
7
Biowire Model of Interstitial and Focal Cardiac Fibrosis.
ACS Cent Sci. 2019 Jul 24;5(7):1146-1158. doi: 10.1021/acscentsci.9b00052. Epub 2019 Jun 4.
9
A Light Wand to Untangle the Myocardial Cell Network.
Methods Protoc. 2019 May 3;2(2):34. doi: 10.3390/mps2020034.

本文引用的文献

1
Myofibroblasts and smooth muscle cells in human myocardial scars: Possible origins and inductive factors.
Cardiovasc Pathol. 1993 Jul-Sep;2(3):207-13. doi: 10.1016/1054-8807(93)90004-L. Epub 2004 Apr 22.
3
Bone marrow-derived cells contribute to cell turnover in aging murine hearts.
Int J Mol Med. 2012 Aug;30(2):283-7. doi: 10.3892/ijmm.2012.995. Epub 2012 May 9.
5
Arrhythmogenic implications of fibroblast-myocyte interactions.
Circ Arrhythm Electrophysiol. 2012 Apr;5(2):442-52. doi: 10.1161/CIRCEP.110.957647.
6
ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors.
FASEB J. 2012 Jun;26(6):2580-91. doi: 10.1096/fj.12-204677. Epub 2012 Mar 13.
7
Cardiac fibrosis in human transplanted hearts is mainly driven by cells of intracardiac origin.
J Am Coll Cardiol. 2012 Mar 13;59(11):1008-16. doi: 10.1016/j.jacc.2011.11.036.
8
Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition.
Hypertension. 2012 May;59(5):958-65. doi: 10.1161/HYPERTENSIONAHA.111.183905. Epub 2012 Mar 5.
9
Heart disease and stroke statistics--2012 update: a report from the American Heart Association.
Circulation. 2012 Jan 3;125(1):e2-e220. doi: 10.1161/CIR.0b013e31823ac046. Epub 2011 Dec 15.
10
Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair.
EMBO J. 2012 Jan 18;31(2):429-42. doi: 10.1038/emboj.2011.418. Epub 2011 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验