Suppr超能文献

系统原发性肉碱缺乏症:临床表现、诊断和治疗概述。

Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management.

机构信息

Medical Genetics Section, Department of Pediatrics, The Children's Hospital at King Fahad Medical City and King Saud bin Abdulaziz University for Health Science, Riyadh, Kingdom of Saudi Arabia.

出版信息

Orphanet J Rare Dis. 2012 Sep 18;7:68. doi: 10.1186/1750-1172-7-68.

Abstract

Systemic primary carnitine deficiency (CDSP) is an autosomal recessive disorder of carnitine transportation. The clinical manifestations of CDSP can vary widely with respect to age of onset, organ involvement, and severity of symptoms, but are typically characterized by episodes of hypoketotic hypoglycemia, hepatomegaly, elevated transaminases, and hyperammonemia in infants; skeletal myopathy, elevated creatine kinase (CK), and cardiomyopathy in childhood; or cardiomyopathy, arrhythmias, or fatigability in adulthood. The diagnosis can be suspected on newborn screening, but is established by demonstration of low plasma free carnitine concentration (<5 μM, normal 25-50 μM), reduced fibroblast carnitine transport (<10% of controls), and molecular testing of the SLC22A5 gene. The incidence of CDSP varies depending on ethnicity; however the frequency in the United States is estimated to be approximately 1 in 50,000 individuals based on newborn screening data. CDSP is caused by recessive mutations in the SLC22A5 gene. This gene encodes organic cation transporter type 2 (OCTN2) which transport carnitine across cell membranes. Over 100 mutations have been reported in this gene with the c.136C > T (p.P46S) mutation being the most frequent mutation identified. CDSP should be differentiated from secondary causes of carnitine deficiency such as various organic acidemias and fatty acid oxidation defects. CDSP is an autosomal recessive condition; therefore the recurrence risk in each pregnancy is 25%. Carrier screening for at-risk individuals and family members should be obtained by performing targeted mutation analysis of the SLC22A5 gene since plasma carnitine analysis is not a sufficient methodology for determining carrier status. Antenatal diagnosis for pregnancies at increased risk of CDSP is possible by molecular genetic testing of extracted DNA from chorionic villus sampling or amniocentesis if both mutations in SLC22A5 gene are known. Once the diagnosis of CDSP is established in an individual, an echocardiogram, electrocardiogram, CK concentration, liver transaminanses measurement, and pre-prandial blood sugar levels, should be performed for baseline assessment. Primary treatment involves supplementation of oral levocarnitine (L-carnitine) at a dose of 50-400 mg/kg/day divided into three doses. No formal surveillance guidelines for individuals with CDSP have been established to date, however the following screening recommendations are suggested: annual echocardiogram and electrocardiogram, frequent plasma carnitine levels, and CK and liver transaminases measurement can be considered during acute illness. Adult women with CDSP who are planning to or are pregnant should meet with a metabolic or genetic specialist ideally before conception to discuss management of carnitine levels during pregnancy since carnitine levels are typically lower during pregnancy. The prognosis for individuals with CDSP depends on the age, presentation, and severity of symptoms at the time of diagnosis; however the long-term prognosis is favorable as long as individuals remain on carnitine supplementation.

摘要

系统性原发性肉碱缺乏症(CDSP)是一种肉碱转运的常染色体隐性遗传病。CDSP 的临床表现在发病年龄、受累器官和症状严重程度方面差异很大,但通常以婴儿期的低酮低血糖血症、肝肿大、转氨酶升高和高血氨、儿童期的骨骼肌病、肌酸激酶(CK)升高和心肌病或成年期的心肌病、心律失常或易疲劳为特征。该诊断可通过新生儿筛查怀疑,但通过证明血浆游离肉碱浓度低(<5 μM,正常为 25-50 μM)、成纤维细胞肉碱转运减少(<对照组的 10%)和 SLC22A5 基因的分子检测来确立。CDSP 的发病率因种族而异;然而,根据新生儿筛查数据,美国的发病率估计约为每 50,000 人中有 1 人。CDSP 是由 SLC22A5 基因的隐性突变引起的。该基因编码有机阳离子转运体 2(OCTN2),可将肉碱跨细胞膜转运。该基因已报告了 100 多种突变,其中 c.136C>T(p.P46S)突变是最常见的突变。CDSP 应与各种有机酸血症和脂肪酸氧化缺陷等继发性肉碱缺乏症区分开来。CDSP 是一种常染色体隐性疾病;因此,每次妊娠的复发风险为 25%。应通过对 SLC22A5 基因进行靶向突变分析来为高危个体和家庭成员进行携带者筛查,因为血浆肉碱分析不足以确定携带者状态。如果已知 SLC22A5 基因中的两种突变,则可以通过从绒毛膜绒毛取样或羊膜穿刺术提取的 DNA 进行分子遗传学检测,对具有 CDSP 高风险的妊娠进行产前诊断。一旦个体被确诊为 CDSP,应进行基线评估,包括进行超声心动图、心电图、CK 浓度、肝转氨酶测量和餐前血糖水平检查。主要治疗方法是口服左卡尼汀(L-肉碱),剂量为 50-400mg/kg/天,分为 3 次服用。迄今为止,尚未为 CDSP 患者制定正式的监测指南,但建议以下筛查:在急性疾病期间,可考虑每年进行超声心动图和心电图检查、频繁监测血浆肉碱水平以及 CK 和肝转氨酶测量。计划怀孕或已经怀孕的 CDSP 成年女性最好在怀孕前与代谢或遗传专家会面,讨论怀孕期间的肉碱管理,因为怀孕期间肉碱水平通常较低。CDSP 患者的预后取决于诊断时的年龄、表现和症状严重程度;但是,只要患者继续接受肉碱补充,长期预后是有利的。

相似文献

3
Analysis of genetic mutations in Chinese patients with systemic primary carnitine deficiency.
Eur J Med Genet. 2014 Oct;57(10):571-5. doi: 10.1016/j.ejmg.2014.08.001. Epub 2014 Aug 13.
5
Carnitine transport and fatty acid oxidation.
Biochim Biophys Acta. 2016 Oct;1863(10):2422-35. doi: 10.1016/j.bbamcr.2016.01.023. Epub 2016 Jan 29.
7
A case of atypical systemic primary carnitine deficiency in Saudi Arabia.
Pediatr Rep. 2018 Jun 27;10(2):7705. doi: 10.4081/pr.2018.7705. eCollection 2018 May 24.
9
Identification of two novel mutations in OCTN2 from two Saudi patients with systemic carnitine deficiency.
J Inherit Metab Dis. 2002 Sep;25(5):363-9. doi: 10.1023/a:1020143632011.
10
Primary Carnitine Deficiency - A Rare Treatable Cause of Cardiomyopathy and Massive Hepatomegaly.
Indian J Pediatr. 2017 Jan;84(1):83-85. doi: 10.1007/s12098-016-2227-7. Epub 2016 Sep 1.

引用本文的文献

1
The global prevalence and genetic spectrum of primary carnitine deficiency.
BMC Genom Data. 2025 Jul 7;26(1):44. doi: 10.1186/s12863-025-01336-z.
2
The role of genetic defects in carnitine-associated hepatic encephalopathy: a review of literature.
Gastroenterol Hepatol Bed Bench. 2024;17(4):357-378. doi: 10.22037/ghfbb.v17i4.2960.
5
Systemic Primary Carnitine Deficiency Presenting With Substantia Nigra and Basal Ganglia Injury: A Case Report.
JIMD Rep. 2025 Apr 4;66(3):e70014. doi: 10.1002/jmd2.70014. eCollection 2025 May.
7
Newborn screening of primary carnitine deficiency: clinical and molecular genetic characteristics.
Ital J Pediatr. 2025 Mar 11;51(1):70. doi: 10.1186/s13052-025-01911-1.
8
Structural and Dynamic Assessment of Disease-Causing Mutations for the Carnitine Transporter OCTN2.
Mol Inform. 2025 Jan;44(1):e202400002. doi: 10.1002/minf.202400002.
9
Unmasking Primary Carnitine Deficiency as a Mimic of Hypertrophic Cardiomyopathy.
JACC Case Rep. 2024 Nov 20;29(22):102730. doi: 10.1016/j.jaccas.2024.102730.
10
Nutritional Management of Patients with Fatty Acid Oxidation Disorders.
Nutrients. 2024 Aug 14;16(16):2707. doi: 10.3390/nu16162707.

本文引用的文献

1
Genotype-phenotype correlation in primary carnitine deficiency.
Hum Mutat. 2012 Jan;33(1):118-23. doi: 10.1002/humu.21607. Epub 2011 Oct 11.
2
Glycosylation of the OCTN2 carnitine transporter: study of natural mutations identified in patients with primary carnitine deficiency.
Biochim Biophys Acta. 2011 Mar;1812(3):312-20. doi: 10.1016/j.bbadis.2010.11.007. Epub 2010 Nov 29.
4
Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening.
Mol Genet Metab. 2010 May;100(1):46-50. doi: 10.1016/j.ymgme.2009.12.015. Epub 2009 Dec 28.
6
Cardiomyopathy and carnitine deficiency.
Mol Genet Metab. 2008 Jun;94(2):162-6. doi: 10.1016/j.ymgme.2008.02.002. Epub 2008 Mar 11.
7
Carnitine membrane transporter deficiency: a rare treatable cause of cardiomyopathy and anemia.
Pediatr Cardiol. 2008 Jan;29(1):163-5. doi: 10.1007/s00246-007-9051-9. Epub 2007 Oct 10.
8
A case of early diagnosed carnitine deficiency presenting with respiratory symptoms.
Ann Nutr Metab. 2007;51(4):331-4. doi: 10.1159/000107675. Epub 2007 Aug 28.
9
Expanded newborn screening identifies maternal primary carnitine deficiency.
Mol Genet Metab. 2007 Apr;90(4):441-5. doi: 10.1016/j.ymgme.2006.10.003. Epub 2006 Nov 28.
10
Carnitine transporter defect: diagnosis in asymptomatic adult women following analysis of acylcarnitines in their newborn infants.
J Inherit Metab Dis. 2006 Oct;29(5):627-30. doi: 10.1007/s10545-006-0376-y. Epub 2006 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验