Suppr超能文献

基于配体和基于蛋白质的激酶抑制剂虚拟筛选的整合,使用多个蛋白激酶基因和构象的集合。

Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.

机构信息

Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA.

出版信息

J Chem Inf Model. 2012 Oct 22;52(10):2501-15. doi: 10.1021/ci3002638. Epub 2012 Oct 1.

Abstract

The rapidly growing wealth of structural and functional information about kinase genes and kinase inhibitors that is fueled by a significant therapeutic role of this protein family provides a significant impetus for development of targeted computational screening approaches. In this work, we explore an ensemble-based, protein-centric approach that allows for simultaneous virtual ligand screening against multiple kinase genes and multiple kinase receptor conformations. We systematically analyze and compare the results of ligand-based and protein-centric screening approaches using both single-receptor and ensemble-based docking protocols. A panel of protein kinase targets that includes ABL, EGFR, P38, CDK2, TK, and VEGFR2 kinases is used in this comparative analysis. By applying various performance metrics we have shown that ligand-centric shape matching can provide an effective enrichment of active compounds outperforming single-receptor docking screening. However, ligand-based approaches can be highly sensitive to the choice of inhibitor queries. Employment of multiple inhibitor queries combined with parallel selection ranking criteria can improve the performance and efficiency of ligand-based virtual screening. We also demonstrated that replica-exchange Monte Carlo docking with kinome-based ensembles of multiple crystal structures can provide a superior early enrichment on the kinase targets. The central finding of this study is that incorporation of the template-based structural information about kinase inhibitors and protein kinase structures in diverse functional states can significantly enhance the overall performance and robustness of both ligand and protein-centric screening strategies. The results of this study may be useful in virtual screening of kinase inhibitors potentially offering a beneficial spectrum of therapeutic activities across multiple disease states.

摘要

不断增长的激酶基因和激酶抑制剂的结构和功能信息,以及该蛋白家族在治疗中的重要作用,为靶向计算筛选方法的发展提供了巨大的动力。在这项工作中,我们探索了一种基于集合的、以蛋白质为中心的方法,该方法允许同时针对多个激酶基因和多个激酶受体构象进行虚拟配体筛选。我们使用基于配体和以蛋白质为中心的筛选方法,通过单一受体和基于集合的对接方案,对结果进行了系统的分析和比较。在这项比较分析中,使用了一组包括 ABL、EGFR、P38、CDK2、TK 和 VEGFR2 激酶在内的蛋白激酶靶标。通过应用各种性能指标,我们表明基于配体的形状匹配可以有效地富集活性化合物,优于单一受体对接筛选。然而,基于配体的方法可能对抑制剂查询的选择高度敏感。使用多个抑制剂查询并结合并行选择排序标准可以提高基于配体的虚拟筛选的性能和效率。我们还表明,基于 kinome 的集合的 replica-exchange Monte Carlo 对接可以在激酶靶标上提供更好的早期富集。这项研究的主要发现是,将基于模板的激酶抑制剂和蛋白激酶结构的结构信息纳入不同功能状态,可以显著提高基于配体和以蛋白质为中心的筛选策略的整体性能和稳健性。这项研究的结果可能对激酶抑制剂的虚拟筛选有用,有望在多种疾病状态下提供广泛的治疗活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验