Suppr超能文献

基于双张量模型的分类张量形态引导:纤维方向的不确定性估计和概率追踪。

Two-tensor model-based bootstrapping on classified tensor morphologies: estimation of uncertainty in fiber orientation and probabilistic tractography.

机构信息

Medical Image Computing, School of Biosciences, University of Kent, UK.

出版信息

Magn Reson Imaging. 2013 Feb;31(2):296-312. doi: 10.1016/j.mri.2012.07.004. Epub 2012 Sep 17.

Abstract

In this manuscript, fast and clinically feasible model-based bootstrapping algorithms using a geometrically constrained two-tensor diffusion model are employed for estimating uncertainty in fiber orientation. A Monte-Carlo-based tensor morphology voxel classification algorithm is initially applied using single-tensor bootstrap samples before the use of a two-tensor model-based bootstrapping algorithm. Classification of tensor morphologies allows the tensor morphology to be considered when selecting the most appropriate bootstrap procedure. A constrained two-tensor model approach can greatly reduce data acquisition and computational times for whole bootstrap data volume generation compared to other multifiber model techniques, facilitating widespread clinical use. For comparison, we propose a new repetition-bootstrap algorithm based on classified voxels and the constrained two-tensor model. Tractography with these bootstrapping algorithms is also developed to estimate the connection probabilities between brain regions, especially regions with complex fiber configurations. Experimental results on synthetic data, a hardware phantom and human brain data demonstrate the superior performance of our algorithms compared to conventional approaches.

摘要

在本文中,使用基于几何约束的双张量扩散模型的快速且临床可行的基于模型的自举算法被用于估计纤维方向的不确定性。在使用基于双张量模型的自举算法之前,首先使用单张量自举样本应用基于蒙特卡罗的张量形态体素分类算法。张量形态的分类允许在选择最合适的自举过程时考虑张量形态。与其他多纤维模型技术相比,受约束的双张量模型方法可以大大减少整个自举数据量生成的数据采集和计算时间,从而促进广泛的临床应用。作为比较,我们提出了一种新的基于分类体素和受约束的双张量模型的重复自举算法。还开发了这些自举算法的轨迹追踪,以估计脑区之间的连接概率,特别是具有复杂纤维结构的脑区。在合成数据、硬件体模和人脑数据上的实验结果表明,与传统方法相比,我们的算法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验