University of California Los Angeles, Los Angeles, California 90095, USA.
Nature. 2012 Sep 20;489(7416):419-22. doi: 10.1038/nature11357.
The average nitrogen-to-phosphorus ratio of marine phytoplankton (16N:1P) is closely matched to the nutrient content of mean ocean waters (14.3N:1P). This condition is thought to arise from biological control over the ocean's nitrogen budget, in which removal of bioavailable nitrogen by denitrifying bacteria ensures widespread selection for diazotrophic phytoplankton that replenish this essential nutrient when it limits the growth of other species. Here we show that in the context of a realistic ocean circulation model, and a uniform N:P ratio of plankton biomass, this feedback mechanism yields an oceanic nitrate deficit more than double its observed value. The critical missing phenomenon is diversity in the metabolic N:P requirement of phytoplankton, which has recently been shown to exhibit large-scale patterns associated with species composition. When we model these variations, such that diazotrophs compete with high N:P communities in subtropical regions, the ocean nitrogen inventory rises and may even exceed the average N:P ratio of plankton. The latter condition, previously considered impossible, is prevented in the modern ocean by shallow circulations that communicate stoichiometric signals from remote biomes dominated by diatoms with low N:P ratios. Large-scale patterns of plankton diversity and the circulation pathways connecting them are thus key factors determining the availability of fixed nitrogen in the ocean.
海洋浮游植物的平均氮磷比(16N:1P)与海水的平均营养含量(14.3N:1P)非常匹配。这种情况被认为是由于海洋氮收支的生物控制所致,其中反硝化细菌去除生物可利用的氮,从而广泛选择固氮浮游植物,当其他物种的生长受到限制时,固氮浮游植物会补充这种必需养分。在这里,我们表明,在一个现实的海洋环流模型和浮游生物生物量的均匀 N:P 比的背景下,这种反馈机制导致海洋硝酸盐缺乏超过其观测值的两倍。关键的缺失现象是浮游植物代谢 N:P 需求的多样性,最近的研究表明,这种多样性与物种组成有关,存在着大规模的模式。当我们对这些变化进行建模时,使得固氮生物在亚热带地区与高 N:P 群落竞争,海洋氮库存就会上升,甚至可能超过浮游生物的平均 N:P 比。在现代海洋中,由于浅循环将来自以硅藻为主的低 N:P 比远程生物群系的化学计量信号进行了交流,从而阻止了后一种情况的发生。浮游植物多样性的大规模模式及其连接它们的循环途径,因此是决定海洋中固定氮可用性的关键因素。