Suppr超能文献

利用潜在狄利克雷分配识别新型 III 型效应因子。

Identification of novel type III effectors using latent Dirichlet allocation.

机构信息

Department of Computer Science and Engineering, Information Engineering College, Shanghai Maritime University, 1550 Haigang Avenue, Shanghai 201306, China.

出版信息

Comput Math Methods Med. 2012;2012:696190. doi: 10.1155/2012/696190. Epub 2012 Sep 2.

Abstract

Among the six secretion systems identified in Gram-negative bacteria, the type III secretion system (T3SS) plays important roles in the disease development of pathogens. T3SS has attracted a great deal of research interests. However, the secretion mechanism has not been fully understood yet. Especially, the identification of effectors (secreted proteins) is an important and challenging task. This paper adopts machine learning methods to identify type III secreted effectors (T3SEs). We extract features from amino acid sequences and conduct feature reduction based on latent semantic information by using latent Dirichlet allocation model. The experimental results on Pseudomonas syringae data set demonstrate the good performance of the new methods.

摘要

在革兰氏阴性菌中鉴定的六种分泌系统中,III 型分泌系统(T3SS)在病原体的疾病发展中起着重要作用。T3SS 引起了广泛的研究兴趣。然而,其分泌机制尚未完全了解。特别是,效应物(分泌蛋白)的鉴定是一项重要且具有挑战性的任务。本文采用机器学习方法来鉴定 III 型分泌效应物(T3SE)。我们从氨基酸序列中提取特征,并使用潜在语义分析模型基于潜在语义信息进行特征降维。在丁香假单胞菌数据集上的实验结果表明了新方法的良好性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/979f/3446681/79b33ce29e4d/CMMM2012-696190.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验